Your Destination for Mobility Engineering Resources

Announcements for SAE Mobilus

Browse All

Recent SAE Edge™ Research Reports

Browse All 166

Recent Books

Browse All 684

Recently Published

Browse All
In modern automotive powertrains, the front-end accessory drive represents a crucial subsystem that guarantees the proper functioning of micro and mild hybrid configurations and auxiliary vehicle functionalities. The motor/generator (12 V or 48 V), the air conditioning compressor and other accessories rely on this subsystem. Therein, the poly-V belt is the main transmission mechanism. From an efficiency standpoint, its behavior is usually represented through slip and elastic shear phenomena. However, the viscoelastic nature of the compounds that constitute the belt layers demand a more detailed approximation of the loss mechanisms. The quantification of such losses allows evaluating the performance of the e-machine integrated in the powertrain. This work models the belt through a lumped-parameter time-domain model, where domains are discretized into multiple elements and represented through the generalized Maxwell model. Loss contributions due to bending, stretching, compression and
Galluzzi, RenatoAmati, NicolaBonfitto, AngeloHegde, ShaileshZenerino, EnricoPennazza, MarioStaniscia, Emiliano
This paper presents findings on the use of data from next-generation Tire Pressure Monitoring Systems (TPMS), for estimating key tire states such as leak rates, load, and location, which are crucial for tire-predictive maintenance applications. Next-generation TPMS sensors provide a cost-effective and energy-efficient solution suitable for large-scale deployments. Unlike traditional TPMS, which primarily monitor tire pressure, the next-generation TPMS used in this study includes an additional capability to measure the tire's centerline footprint length (FPL). This feature offers significant added value by providing comprehensive insights into tire wear, load, and auto-location. These enhanced functionalities enable more effective tire management and predictive maintenance. This study collected vehicle and tire data from a passenger car hatchback equipped with next-generation TPMS sensors mounted on the inner liner of the tire. The data was analyzed to propose vehicle-tire physics
Sharma, SparshSon, Roman
This paper presents a methodology to optimally select between routes proposed by mapping software. The objective of the optimization is to make the best trade-off between travel time and energy consumption when deciding between different routes. The method uses an Intelligent driver model to convert the data from the mapping software into a vehicle speed & torque profile, then uses a reduced order energy model to find the vehicle energy consumption for each route. Weightings are applied to the difference in energy and travel time for each route compared to the primary route. The vehicle used in this investigation is the Stellantis Pacifica PHEV. Results support energy savings of up to 20% compared to the primary route, which depends on the routes and initial battery State of Charge (SOC).
Robare, AndrewPoovalappil, AmanUdipi, AnirudhBhure, MayurBahramgiri, MojtabaRobinette, DarrellNaber, JeffreyChen, Bo
The paper documents the modeling and experimental work on a common rail fuel injection system for Dimethyl Ether, a potential diesel substitute with a low carbon intensity signature. The DME fuel system is deployed on a light duty 2.2L compression ignition engine. The paper describes the injector optimization to shift to higher flows to account for the lower heating value and density of the DME when compared to diesel. The type of the injection system used for the DME application is an advanced rendering of the Common rail noted for a one-piece piston-needle injector construction and a solenoid driven spill valve featuring a pressure balanced poppet. A dedicated high-pressure fuel pump designed to pressurize DME is used. The design results in a fast acting open and close injection event, reduced leakage, with reduced cavitation in the fuel injector volume. Design parameters for system optimization included fill and spill orifices, needle lift, bias spring, and injector hole size. The
De Ojeda, WilliamWu, Simon (Haibao)
Honda Motor Corporation has developed a new naturally aspirated in-line 4-cylinder direct injection gasoline engine for C segment sedans that combines high environmental performance and power output. Development time and cost were greatly reduced by utilizing basic structures and components that had previously been developed engine for hybrid vehicles. In addition to the environmental performance at which hybrid engines excel, the driving performance required from a pure gasoline engine for C segment sedans with a low environmental impact was aimed to achieve by optimizing the shape of the combustion chamber to obtain rapid combustion, adjusting intake and exhaust valve timing, employing fuel injection control and adopting a two-piece water jacket that protects the exhaust system component by lowering the exhaust gas temperature at high load. As a result, the newly developed engine achieves a maximum thermal efficiency of 40% with knock suppression effect through rapid combustion
Kondo, TakashiOhmori, TakeyukiYamamoto, JunpeiMiki, Kentaro
Abstract Real-world driving data is an invaluable asset for several types of transportation research, including emissions estimation, vehicle control development, and public infrastructure planning. Traditional methods of real-world driving data collection use expensive GPS-based data logging equipment which provide advanced capabilities but may increase complexity, cost, and setup time. This paper focuses on using the Google Maps application available for smartphones due to the potential to scale-up real-world driving data logging. Samples of the potential data processing and information that can be gathered by such a logging methodology is presented. Specifically, two months of Google Maps driving data logged by a rural Michigan resident on their smartphone may provide insights on their driving range, duration, and geographic area of coverage (AOC) to guide them on future vehicle purchase decisions. Aggregating such statistics from crowd-sourcing real-world driving data via Google
Manoj, AshwinYin, SallyAhmed, OmarVaishnav, ParthStefanopoulou, AnnaTomkins, Sabina
As one of the most important design choices in the powertrain design cycle, motor selection is conventionally performed according to given automotive requirements. Motor-related powertrain design parameters like gear ratio, power output ratio between different axles, are excluded from the motor design process. In this paper, three comparative studies are performed to investigate the impact of these motor-related powertrain design parameters on the motor performance and the weight/cost/efficiency of the entire EV powertrain. In the first study, three PM motor designs—characterized by high, medium, and low rated speeds—will be assessed for a two-axle EV using various gear ratio configurations. The same motor design will be used for both axles. In the second study, five motor designs with varying power and ratings (PM, non-PM) but identical rated speeds will be evaluated for a two-axle EV, permitting different power ratings for the front and rear axles. The design trade-offs between motor
Movahed, EhsanGodbehere, JonathanJia, Yijiang
Controlling the combustion phasing of a multi-fuel compression ignition engine in varying ambient conditions, such as low temperature and pressure, is a challenging problem. Traditionally, engine control is achieved by performing experiments on the engine and building calibration maps. As the number of operating conditions increase, this becomes an arduous task, and model-based controllers have been used to overcome this challenge. While high-fidelity models accurately describe the combustion characteristics of an engine, their complexity limits their direct use for controller development. In recent years, data-driven models have gained much attention due to the available computation power and ease of model development. The accuracy of the developed models, which, in turn, dictates the controller’s performance, depends on the dataset used for building them. Several actuators are required to achieve reliable combustion across different operating conditions, and obtaining extensive
Govind Raju, Sathya AswathSun, ZongxuanKim, KennethKweon, Chol-Bum
The automotive industry faces ongoing challenges in reducing vehicle mass and carbon emissions while ensuring structural integrity. Traditional design approaches often fail to address these issues comprehensively. This paper explores the application of generative design (GD) to optimize critical automotive components, specifically focusing on reducing mass and in turn carbon emissions. GD builds upon traditional topology optimization by employing iterative method using MELS approach to refine designs providing multiple alternative designs to choose from. MELS (Modified Extensible Lattice Sequence) specifically is used to equally spread-out points (designs) in a space by minimizing clumps and empty spaces. This property of MELS makes lattice sequences an excellent space filling DOE scheme. GD leverages the design of experiments (DOE) to vary key design variables systematically to generate and consider many potential design concepts for a given problem. It also uses artificial
Hosmath, AnjaneyBarai, JayDhangar, Vinaykumar
This paper investigates the problem of nonlinear model predictive control (NMPC) strategy for a class of nonlinear systems with multiple actuators’ response time-delays. Conventional approaches that incorporate these time-delays into the NMPC formulation typically result in a significant increase in the optimization problem's scale. To address these problems, we propose a novel NMPC strategy. In the first stage, the NMPC strategy is designed for the nonlinear system without considering actuator’s response time-delay, thereby maintaining the original scale of the optimization problem. The optimal control sequence derived from this NMPC is then fitted to a time-continuous polynomial function, serving as a reference signal for the actuators' response time-delay models. In the second stage, combining inverse model and inverse Laplace transform techniques, a novel inverse model compensation control (IMCC) strategy is designed for actuators’ response time-delays. This IMCC strategy enables
Wang, Bin
Automotive seating systems have become increasingly sophisticated, providing consumers with more flexible configurations and comfort functionalities. Traditional power seating, which relied on a few motors to adjust the seat position, has evolved into more technically advanced reconfigurable systems equipped with additional feedback sensors and actuators. These advancements include features such as Easy Entry, Zero Gravity, Stadium Swivel, IP Nesting, Auto Lumbar/Bolster Adjustment and Power Long Rails. All the features indicate that the overall control of seating systems now resembles robotic arm control or multi-body control, involving numerous coordinated movements. In this paper, we propose a novel control strategy for the coordinated speed control of multiple motors. Unlike traditional seating controls, which typically use direct switches or open-loop systems, we introduce a feedback approach that incorporates Kalman-filter-based speed estimation using raw signals directly from
Yang, HanlongLi, Miranda
Along with the innovation of vehicle technology, the active steering system has an excellent effect on the prevention of uncontrolled steering events due to its significant advantage in optimising handling stability. Meanwhile, the safety boundary is an important judgement basis for the stable operation of the vehicle, and based on the safety boundary, the controller can help the driver to keep the vehicle in the stable region of the state space. In this paper, an active rear wheel steering model prediction controller is proposed based on the safety boundary to control the rear wheel steering angle to assist the front wheel steering, and constrain the actual cross-swing angular angular velocity and centre-of-mass lateral deflection angle of the vehicle within the safety boundary of the state space, so as to ensure the stable operation of the vehicle, and the main research contents are as follows: 1. Aiming at the problem that the linear two-degree-of-freedom model of the vehicle can't
Li, ZiyuZheng, HongyuKaku, ChuyoZhang, Yuzhou
In this paper, the topology and shape optimization of a vehicle Heating, Ventilation, and Air Conditioning (HVAC) system is presented. The CFD and optimization methodologies are implemented within AcuSolve™ software. The topology optimization algorithm computes the geometry, where the design domain is parameterized with a field of porosity design variables which indicates the material, fluid or solid, throughout the domain. The optimization is performed using the continuous adjoint approach by the Galerkin Least Squares solver on which the AcuSolve™ solver is based. The design is further improved by using shape optimization. To optimize the geometrical shape, a combination of smooth perturbations, in terms of so called morph shapes, are used to deform the geometrical shape in the optimization algorithm. To this end, a parameterization of the design space is done using a moderate number of design variables, each associated with a morph shape. The two optimization phases are connected by
Papadimitriou, DimitriosSandboge, Robert
Tractor-semitrailers play an important role in the transportation industry. However, global warming and the rapid advancement of energy technologies have driven the transformation of high-emission vehicles, such as tractor-semitrailers, to be powered by new energy sources in order to achieve goals related to energy conservation, emission reduction, and cost savings. By using the motor as the primary driving force, the energy recovered during braking or coasting can be converted into electricity and stored in the battery for later use. While much research has been conducted on braking control and energy recovery for passenger cars, there is limited research on tractor-semitrailers. Additionally, the jackknife is a critical factor to consider under high-speed conditions. To investigate the braking energy recovery of electric tractor-semitrailers, tire and motor models were developed based on the turning and braking conditions of such vehicles. Taking into account the load transfer effect
Chen, RunpingDuan, Yupeng
This study investigates the impact of thermal imbalances on energy delivery and Battery State of Power (SoP) in immersion-cooled battery cells. It explores how these imbalances, which arise when cells within a module operate at different temperatures, lead to variations in internal resistance and inefficiencies in energy storage and discharge. Such imbalances critically affect the battery's SoP, representing the maximum charge or discharge power the system can support over specific time intervals. By analyzing SoP over 10-second durations and continuous, we assess how thermal imbalances influence both short-term and medium-term power capabilities. Temperature significantly impacts cell aging, and imbalances can accelerate degradation in some cells, ultimately affecting serviceability. To address these issues, we employ a high-level simulation framework that integrates advanced tools. GT-SUITE software optimizes thermal performance by adjusting coolant temperature and flow rate to
Meshginqalam, AtaNegro, SergioAtluri, PrasadTyagi, RamavtarSuzuki, JorgeK B, AnjushaCao, Yuyuan
During engine idling, the low engine speed, typically from 600 rpm to 800 rpm, together with the low throttle opening angle, makes it challenging for a proper fuel air mixing process. The uneven intake charge distribution and high portion of internal EGR because of the inefficient gas exchange process further make the air fuel ratio unstable, which is challenging for a robust ignition and combustion process. In this paper, the challenge of achieving proper combustion phasing while maintaining acceptable combustion stability is investigated, and a specially designed common-coil pack was utilized to improve engine idling performance by supplying prolonged ignition duration and elevated discharge current amplitude. The common-coil pack, which comprises three parallel connected ignition coils, was shared by all 4 cylinders of the engine. The ignition strategy shows the capability to advance the combustion phasing for higher IMEP output, while maintaining the combustion stability, and
Yu, XiaoChen, GuangyunQian, JinLeblanc, SimonWang, LinyanZheng, Ming
Decarbonized or low carbon fuels, such as hydrogen/methane blends, can be used in internal combustion engines to support ambitious greenhouse gas (GHG) emission reduction goals worldwide, including achieving carbon neutrality by 2045. However, as the volumetric concentration of H2 in these fuel blends surpasses 30%, the in-cylinder flame propagation and combustion rates increase significantly, causing an unacceptable increase in nitrogen oxides (NOx) emissions, which is known to have substantial negative effects on human health and the environment. This rise in engine-out NOx emissions is a major concern, limiting the use of H2 fuels as a means to reduce GHG emissions from both mobile and stationary power generation engines. In this study, an experimental investigation of the combustion performance and emissions characteristics of a 4th generation Tour split-cycle engine was undertaken while operating on 100% methane and various hydrogen/methane fuel blends (30%, 40%, and 50% by volume
Bhanage, PratikCho, KukwonAnderson, BradleyKemmet, RyanTour, GiladAtkinson, ChrisTour, HugoTour, Oded
Under the background of the global dual carbon target, ammonia and hydrogen as the carbon-free fuel, have become a research hotspot for internal combustion engines. The existing researches mainly focus on the combustion characteristics influenced by equivalence ratio, hydrogen jet ignition and so on, while the relationship between combustion and emission characteristics should be also paid more attention. In this paper, the impact of combustion characteristic parameters on engine emissions is investigated by GT-power. The simulation model is based on a single cylinder engine with an active pre-chamber. Meanwhile, combustion characteristic parameters, in terms of CA50, combustion duration, CA10-CA50 and CA50-CA90 are set referred to the research of hydrogen jet ignition ammonia-hydrogen internal combustion engines. The results shown that there is compelling correlation between combustion parameters and specific emission profiles in ammonia-hydrogen internal combustion engines. Notably
Yuan, YangShang, QuanboDeng, JunLi, LiguangYin, XuemeiLai, HuilongMa, JiangliYu, FeiFeng, FengCui, HaoDu, Junchen
Accurate estimation of crucial quantities in automotive drivetrain systems is essential for optimizing performance, durability, and emissions. However, the presence of time delays, arising from tasks scheduling and communication latency between control units, can significantly hinder the effectiveness of advance control algorithms. Closed-loop performance is often limited by the equivalent time delay between the control action command, its effect on the system, and the measurement of the reaction. Frequently, commands and measurements originate from different sources, requiring precise coordination to accurately estimate the driveline response. This paper presents a novel model-based approach that integrates Kalman filtering with horizon prediction techniques to effectively address time-delay compensation. By leveraging the descriptive capabilities of physics-based models, the proposed method enables to overcome synchronization misalignment between commands, actuations and measurements
Rostiti, CristianPatel, NadirshCatkin, Bilal
To take into account the drivers’ performance expectations in the comprehensive performance optimization of plug-in hybrid electric vehicles (PHEVs), we proposed an optimization method for the shift schedule of single-shaft parallel PHEVs considering drivers’ demands on both dynamic and economic performance. In accordance with torque distribution strategies developed for different working modes, the modes switching logic is formulated based on the demand torque along with the engine torque characteristics and the state of charge (SOC) of power battery. And a quantification model for driver’s intention is proposed using a fuzzy inference approach, which can compute the driver's dynamic and economic performance expectations using the driver's operation characteristics and vehicle status as input. With the help of a linear weighting method using the performance expectations as weights, a comprehensive performance evaluation function is constructed as the optimization objective of shift
Yin, XiaofengLi, HongZhang, JinhongLei, Yulong
The research object of this project is the anti-slip and lateral stability control technique for a distributed three-axis drive vehicle. What differs from the traditional four-motor power system layout is that the third axle has two motors, while the second axle only has one motor. Compared with the traditional design, this layout can reduce dependence on battery performance and maintain motor operation in a high-efficiency range by switching between different operating modes. For example, when driving at high speeds, only the motor on the second axle works, which can improve motor efficiency. When accelerating or climbing, all motors work to provide a large power output. In the research, the vehicle model was first established in Simulink, and then co-simulated with TruckSim. The drive anti-slip control first identified the optimal slip rate for the road, and then used the sliding mode control to determine the driving torque for each wheel, achieving good control effects under various
Shen, RuitengZheng, HongyuKaku, ChuyoZong, Changfu
Drivers sometimes operate the accelerator pedal instead of the brake pedal due to driver error, which can potentially result in serious accidents. To address this, the Acceleration Control for Pedal Error (ACPE) system has been developed. This system detects such errors and controls vehicle acceleration to prevent these incidents. The United Nations is already considering regulations for this technology. This ACPE system is designed to operate at low speeds, from vehicle standstill to creep driving. However, if the system can detect errors based on the driver's operation of the accelerator pedal at various driving speeds, the system will be even more effective in terms of safety. The activation threshold of ACPE is designed to detect operational errors, and it is necessary to prevent the system from being activated during operational operations other than operational errors, i.e., false activation. This study focuses on the pedal operation characteristics of pedal stroke speed and
Natsume, HayatoShen, ShuncongHirose, Toshiya
New highly ductile advanced high strength steel (AHSS) grades with tensile strength greater than 980 MPa have been developed with the aim of achieving a combination of high strength and excellent formability. The new jetQTM-Family [1, 2] offers high local and global ductility, which is expected to contribute to the improvement of vehicle crash performance. For the reliable design and management of vehicle crash performance, material modeling, including work hardening behavior and material failure strain, plays an important role in numerical simulation. Especially, the accuracy of material failure prediction is important for the development of crash performance. In this study, the fracture behaviors of 980jetQTM, 1180jetQTM, and conventional Dual-Phase (DP) steels are investigated through simple tensile and V-bending fracture tests incorporating experimental-numerical hybrid ductile fracture analysis. Based on the experimental results, the ductile fracture parameters in the Hosford
Sato, KentaroSakaidani, TomohiroOhnishi, YoichiroPaton, AdrianRoesen, Hartwig
Engineers have been dealing with either random excitation or swept sinusoidal excitation quite often in the past, in order to estimate the fatigue damage in an automotive system. Efficient numerical methods in frequency domain for the fatigue due to either form of excitation (not both) have become more mature in the past decades. However, a greater demand for a fatigue estimation under a more complicated form of excitation has risen as electric vehicles are being developed in the automotive industry. In particular, delicate rotating components such as electric motors and gearboxes can be simultaneously subject to a random excitation due to any possible rough surfaces on the road as well as sinusoidal excitation due to its own rotation. Hence, this combined or mixed excitation, also known as swept sine-on-random (SSOR), has posed a challenge to the fatigue simulation community when using a frequency-domain method is desired.. The very challenge is due to the fact that when either random
Yang, ZaneSridhar, KarthikeyanLingareddy, Manoj Kumar