Electrified Propulsion for Aerospace
22AERP04_03
04/01/2022
- Content
-
Where to Start?
The advent of electrified propulsion in the aerospace sector, captured in microcosm by the fast-emerging eVTOL market, both threatens to upset the establishment of major aerospace players and offers significant new opportunities for start-up companies. In all cases, it is forcing a marriage of system simulation and architecture definition techniques from markets already meeting these challenges, such as automotive. The demands of these aerospace applications are causing engineers on both sides to find the best blend of tools and approaches to meet their goals.
In the eVTOL marketplace there is no common ground yet regarding the number of propulsion modules, their disposition or the underlying electrification technology to convert stored energy into thrust. As a result, there are several approaches, each with its own set of perceived benefits in addressing key attributes like mass, range, safety, and efficiency. Taking this to a deeper level invites a myriad of questions and challenges. Among the most hotly debated are those related to the overall architecture options available, including rim driven fan (RDF) or hub driven fan (HDF), whether a gearbox has a rightful place in the overall optimized system and how certification hurdles can be overcome by intelligently integrating systems.
- Pages
- 6
- Citation
- "Electrified Propulsion for Aerospace," Mobility Engineering, April 1, 2022.