Technical Standards - SAE Mobilus
This standard is intended to apply to portable compressed gaseous oxygen equipment. When properly configured, this equipment is used either for the administration of supplemental oxygen, first aid oxygen or smoke protection to one or more occupants of either private or commercial transport aircraft. This standard is applicable to the following types of portable oxygen equipment: a Continuous flow 1 Pre-set 2 Adjustable 3 Automatic b Demand flow 1 Straight-demand 2 Diluter-demand 3 Pressure-demand c Combination continuous flow and demand flow.
This document establishes the minimum requirements for an environmental test chamber and test procedures to carry out anti-icing performance tests according to the current materials specification for aircraft deicing/anti-icing fluids. The primary purpose for such a test method is to determine the anti-icing performance under controlled laboratory conditions of AMS1424 Type I and AMS1428 Type II, III, and IV fluids.
This SAE Standard covers the mini-shed testing methodology to measure the rate of refrigerant loss from an automotive air conditioning (A/C) system. This SAE procedure encompasses both front and rear air conditioning systems utilizing refrigerants operating under sub-critical conditions. The SAE procedure will cover multiple refrigerants to emission testing and is utilized for evaluating air condtioning systems. Heat pump systems can also be evaluated; however, they will have different usage and mission profiles.
This SAE Aerospace Standard (AS) covers the general requirements for the design, manufacture, and test of 28 VDC, 270 VDC, and 115 VAC solid-state power controllers (SSPCs) for use in electrical power systems. SSPCs conforming to this standard are intended for use in controlling the making and breaking of power circuits for electrically operated equipment and devices, and for providing overload and short-circuit protection. Applications that require SSPCs to have a high level of performance in some areas or may be exposed to harsher electrical or environmental conditions are designated as CLASS A. Applications that utilize SSPCs in moderate level of performance or are exposed to a controlled environment are designated as CLASS C. Applicability of both MIL-STD-704 and RTCA DO-160G have been considered when determining the performance standards for the designated classes of SSPCs. To support older aircraft platforms, legacy versions of these specifications were also considered as
This specification establishes the requirements for the following types of self-locking nuts in thread diameter sizes 0.1380 through 0.6250 inch: a Wrenching Nuts: i.e., hexagon, double hexagon, and spline nuts. b Anchor Nuts: i.e., plate nuts, gang channel nuts, and shank nuts. The wrenching nuts, shank nuts, and nut elements of plate and gang channel nuts are made of a corrosion- and heat-resistant nickel-base alloy of the type identified under the Unified Numbering System as UNS N07001 and of 180000 psi axial tensile strength at room temperature, with maximum conditioning of parts at 1400 °F prior to room temperature testing.
This SAE standard establishes the minimum construction and performance requirements for a combination cable consisting of 11 conductors and two twisted pairs for use on trucks, trailers, and dollies for 12 VDC nominal applications in conjunction with SAE J2691 (15 pole connectors.) The cable includes both power and unjacketed SAE J1939-15 paired signal circuits along with dual ground wires to accommodate grounding requirements within the constraints of the SAE J2691 terminal capacity.
This SAE Standard defines the limits for a classification of automotive gear lubricants in rheological terms only. Other lubricant characteristics are not considered.
This SAE Aerospace Standard (AS) establishes vibration and transmissibility test procedures which compare the relative strengths of various loop and saddle type support clamps. This procedure is intended for conducting fatigue testing which is standard throughout the aerospace industry thereby establishing a clamp strength comparison that can be used in an evaluation process. The testing required by this document ensures that clamps will meet adequate fatigue requirements only. It does not infer qualification of the clamp installation techniques or its ability to meet in-service environments or operating conditions. Separate qualification testing should be performed to ensure satisfactory service of the installed clamp.
Items per page:
50
1 – 50 of 19133