Browse Topic: Energy storage systems

Items (5,572)
The growing demand for sustainable transportation solutions and renewable energy storage systems has heightened the necessity for precise and effective prediction of battery thermal performance. However, achieving both precision and efficiency poses a challenge, necessitating exploration into diverse methodologies. The conventional use of Computational Fluid Dynamics (CFD) offers a comprehensive insight into thermal dynamics but prioritizes precision over efficiency. To enhance the efficiency of this traditional approach, numerous reduced-order modeling techniques have emerged, and the concept of Machine Learning (ML) presents a distinct avenue for enhancing simulation capabilities, particularly in the context of mobility solutions. This paper presents a novel approach to accelerate battery thermal analysis by integrating CFD and ML. The CFD simulations provide an intricate understanding of the thermal dynamics within batteries, encompassing fluid flow and temperature distributions
Devarajan, GurudevanVaidyanathan, GaneshBhave, AjinkyaJi, LichaoWang, JiaoZhou, WeiHe, JiguangShi, Pengfei
In recent years, climate change and geopolitical instability have intensified the focus on sustainable power generation. This shift seeks alternatives that balance environmental impact, cost-effectiveness, and practicality. Specifically, in transportation and power generation, electric motors face challenges against internal combustion engines due to the high cost and mass of batteries required for energy storage. This makes electric solutions less favorable for these sectors. Conversely, internal combustion engines, when properly fueled, offer cost-effectiveness and a quasi-environmentally-neutral option. To address these challenges, researchers have explored e-fuels derived from renewable sources as a carbon-neutral supply for internal combustion engines. Among these, hydrogen is particularly promising. In hydrogen-powered internal combustion engines, 3D-CFD (Computational Fluid Dynamics) in-cylinder models are crucial. Once validated, these models can speed up the design process. A
Sfriso, StefanoBerni, FabioBreda, SebastianoFontanesi, StefanoCordisco, IlarioLeite, Caio RamalhoBrequigny, PierreFoucher, Fabrice
To address the pressing issue of electrical fluctuations from renewable energy technologies, an energy storage system (ESS) is proposed. The vanadium redox flow battery (VRFB) is gaining significant attention due to its extended lifespan, durability, thermal safety, and independent power capacity, despite its high cost. Key components of the VRFB include a membrane, carbon electrode, bipolar plate, gasket, current collector, electrolyte, and pump. Among these, the carbon electrode and bipolar plate are the most expensive. Reducing capital costs in VRFB systems is crucial for advancing clean energy solutions. Conventional flow field designs like interdigitated flow field (IFF), serpentine flow field (SFF), and parallel flow field (PFF) are used to feed the electrolyte into the VRFB cell, necessitating thicker bipolar plates to avoid cracking during the machining process. This study focuses on optimizing the flow-through (FT) design, which eliminates the need for machining on bipolar
Aiemsathit, PorametSun, PengfeiAlizadeh, MehrzadLaoonual, YossapongCharoen-amornkitt, PatcharawatSuzuki, TakahiroTsushima, Shohji
The rise of electric vehicles (EVs) highlights the need to transition to a renewable energy society, where power is generated from sustainable sources. This shift is driven by environmental, economic, and energy security concerns. However, renewable energy sources like wind and solar are intermittent, necessitating extensive energy storage systems. Vanadium redox flow batteries (VRFBs) are promising for large-scale energy storage due to their long cycle life, scalability, and safety. In VRFBs, cells are typically connected in series to increase voltage, with electrolytes introduced through parallel flow channels using a single manifold. This design, while simple and low in pressure drop, often leads to imbalanced flow rates among cells, affecting performance. Balancing flow rates is crucial to minimize uneven overpotential and enhance durability, presenting an optimization challenge between achieving uniform flow and minimizing pressure drop. This study developed numerical models to
Suwanpakdee, NutAiemsathit, PorametCharoen-amornkitt, PatcharawatSuzuki, TakahiroTsushima, Shohji
Electric double-layer capacitors (EDLCs) store charge by adsorbing ions at the electrode-electrolyte interface, offering fast charge/discharge rates, high power density, minimal heat generation, and long cycle life. These characteristics make EDLCs ideal for memory backup in electronic devices and power assistance in electric and hybrid vehicles. However, their energy density is lower than that of batteries, necessitating improvements in electrical capacity and potential. Traditionally, activated carbon with a high specific surface area has been used, but recent research focuses on mesoporous carbon materials for better ion diffusion. This study uses resorcinol-formaldehyde-carbon cryogel (RFCC) with mesopores and organic electrolytes with a wider electrochemical window. Various RFCCs with different pore sizes were synthesized and evaluated. Comprehensive investigations into the pore structures and surface properties of both synthesized carbon gels and commercial mesoporous materials
Cheng, ZairanOkamura, TsubasaOhnishi, YutoNakagawa, Kiyoharu
As the automotive sector shifts towards cleaner and more sustainable technologies, fuel cells and batteries have emerged as promising technologies with revolutionary potential. Hydrogen fuel cell vehicles offer faster refueling times, extended driving ranges, and reduced weight and space requirements compared to battery electric vehicles, making them highly appealing for future transportation applications. Despite these advantages, optimizing electrode structures and balancing various transport mechanisms are crucial for improving PEFCs’ performance for widespread commercial viability. Previous research has utilized topology optimization (TO) to identify optimal electrode structures and attempted to establish a connection between entropy generation and topographically optimized structures, aiming to strengthen TO numerical findings with a robust theoretical basis. However, existing studies have often neglected the coupling of transport phenomena. Typically, it is assumed that a single
Tep, Rotanak Visal SokLong, MenglyAlizadeh, MehrzadCharoen-amornkitt, PatcharawatSuzuki, TakahiroTsushima, Shohji
The danger of lithium-ion batteries in electric vehicles (EVs) is intensified when they are used at inappropriate temperatures, leading to self-heating and eventually contributing to thermal runaway. Nevertheless, there is uncertainty through the safety of reusing batteries after they have been exposed to heat damage and water mist from fire extinguishers. To address these concerns, this study aimed to experimentally investigate the impact of temperature on batteries and introduce a thermal management using a water mist. Subjecting a battery to a temperature of 100°C for a duration of 39 minutes can immediately detect inoperability from a sudden drop in voltage. The use of water mist was proposed to rapidly mitigate the heat production inside the battery. The state of health (SOH) and the impedance were employed to confirm the battery’s functionality after exposure to thermal abuse and water spraying. The SOH of fresh cells was measured as a reference line for comparison to tested
Trinuruk, PiyatidaPatthathum, PathompornJumnongjit, Apiwit
Most electric 2-wheelers on the market today seek to replace combustion engine vehicles from 50cc to 150cc which equates to an electric motor power between 2 and 12 kW. The traction voltage level of these vehicles is mostly between 44V and 96V. However, the actual choice of voltage on a specific vehicle seems to be arbitrary and higher voltage does not necessarily correlate with higher motor power. This paper seeks to highlight considerations and tradeoffs which feed the choice of traction voltage levels. Important criteria are electrical safety standards and their impact on vehicle electrical architecture, the performance and availability of key electronics parts such as capacitors, MOSFETs, and gate drivers, while also highlighting functional safety aspects. This paper shows by a comprehensive analysis of the motor drive that for the vehicle class mentioned above the traction voltage level can be kept below 60V without any performance impact, while also ensuring electrical and
Schmitt, Stefan
A great number of performances of an electric vehicle such as driving range, powering performance, and the like are affected by its configured batteries. Having a good grasp of the electrical and thermal behavior of the battery before the detailed design stage is indispensable. This paper introduces an experiment characterization method of a lithium-ion battery with a coolant system from cell level to pack level in different ambient conditions. Corresponding cell and pack simulation models established in AMESim that aimed to capture the electrical and thermal features of the battery were also illustrated, respectively. First, the capacity test and hybrid pulse power characterization (HPPC) test were conducted in a thermotank to acquire basic data about the battery cell. Next, based on acquired data, first-order equivalent circuit model (1C-ECM) was built for the battery cell and further combined with environmental boundary conditions to check the simulation accuracy. Then, hybrid
Zhou, ShuaiLiu, HuaijuYu, HuiliYan, XuYan, Junjie
Heavy heavy-duty diesel truck (HHDDT) drive cycles for long-haul transport trucks were developed over 20 years ago and have a renewed relevance for performance assessment and technical forecasting for transport electrification. In this study, a model was constructed from sparse data recorded from the real-life on-road activity of a small fleet of class 8 trucks by fitting them into separate driving-type segments constituting the complete HHDDT drive cycle. Detailed 1-s resolution truck fleet raw data were also available for assessing the drive cycle model. Numerical simulations were conducted to assess the model for trucks powered by both 1.0 MW charging and 300 kW-level e-Highway, accounting for elevation and seasonally varying climate conditions along the Windsor–Quebec City corridor in Canada. The modeling approach was able to estimate highway cruising speeds, energy efficiencies, and battery pack lifetimes normally within 2% of values determined using the detailed high-resolution
Darcovich, KenRibberink, HajoSoufflet, EmilieLauras, Gaspard
The New Car Assessment Program (e.g., US NCAP and EuroNCAP) frontal crash tests are an essential part of vehicle safety evaluations, which are mandatory for the certification of civil means of transport prior to normal road exploitation. The presented research is focused on the behavior of a tubular low-entry bus frame during a frontal impact test at speeds of 32 and 56 km/h, perpendicular to a rigid wall surface. The deformation zones in the bus front and roof parts were estimated using Ansys LS-DYNA and considered such factors as the additional mass (1630 kg) of electric batteries following the replacement of a diesel engine with an electric one. This caused stabilization of the electric bus body along the transverse axis, with deviations decreased by 19.9%. Speed drop from 56 to 32 km/h showed a reduction of the front window sill deformations from 172 to 132 mm, and provided a twofold margin (159.4 m/s2) according to the 30g ThAC criterion of R80. This leads to the conclusion about
Holenko, KostyantynDykha, AleksandrKoda, EugeniuszKernytskyy, IvanRoyko, YuriyHorbay, OrestBerezovetska, OksanaRys, VasylHumeniuk, RuslanBerezovetskyi, SerhiiChalecki, Marek
With the global issue of fossil fuel scarcity and the greenhouse effect, interest in electric vehicles (EVs) has surged recently. At that stage, because of the constraints of the energy density and battery performance degradation in low-temperature conditions, the mileage of EVs has been criticized. To guarantee battery performance, a battery thermal management system (BTMS) is applied to ensure battery operates in a suitable temperature range. Currently, in the industry, a settled temperature interval is set as criteria of positive thermal management activation, which is robust but leads to energy waste. BTMS has a kilowatt-level power usage under high- and low-temperature environments. Optimizing the BTMS control strategy becomes a potential solution to reduce energy consumption and overcome mileage issues. An appropriate system simulation model provides an effective tool to evaluate different BTMS control strategies. In this study, a predictive BTMS control strategy, which adjusts
Huang, ZhipeiChen, JiangboTang, Hai
Fuel cell vehicles (FCVs) offer a promising solution for achieving environmentally friendly transportation and improving fuel economy. The energy management strategy (EMS), as a critical technology for FCVs, faces significant challenges of achieving a balanced coordination among the fuel economy, power battery life, and durability of fuel cell across diverse environments. To address these challenges, a learning-based EMS for fuel cell city buses considering power source degradation is proposed. First, a fuel cell degradation model and a power battery aging model from the literature are presented. Then, based on the deep Q-network (DQN), four factors are incorporated into the reward function, including comprehensive hydrogen consumption, fuel cell performance degradation, power battery life degradation, and battery state of charge deviation. The simulation results show that compared to the dynamic programming–based EMS (DP-EMS), the proposed EMS improves the fuel cell durability while
Song, DafengYan, JinxingZeng, XiaohuaZhang, Yunhe
Increasing global pressure to reduce anthropogenic carbon emissions has inspired a transition from conventional petroleum-fueled internal combustion engines to alternative powertrains, including battery electric vehicles (EVs) and hybrids. Hybrids offer a promising solution for emissions reduction by addressing the limitations of pure EVs such as slow recharge and range anxiety. In a previous research endeavor, a prototype high-power density generator was meticulously designed, fabricated, and subjected to testing. This generator incorporated a compact permanent magnet brushless dynamo and a diminutive single-cylinder two-stroke engine with low-technology constructions. This prototype generated 8.5 kW of electrical power while maintaining a lightweight profile at 21 kg. This study investigates the performance and emissions reduction potential by adapting the prototype to operate on methanol fuel. Performance and emissions were experimentally evaluated under varying operating conditions
Gore, MattNonavinakere Vinod, KaushikFang, Tiegang
This study presents a control co-design method that utilizes a bi-level optimization framework for parallel electric-hydraulic hybrid powertrains, specifically targeting heavy-duty vehicles like class 8 semi-trailer trucks. The primary objective is to minimize battery energy consumption, particularly under high torque demand at low speed, thereby extending both battery lifespan and vehicle driving range. The proposed method formulates a bi-level optimization problem to ensure global optimality in hydraulic energy storage sizing and the development of a high-level energy management strategy. Two nested loops are used: the outer loop applies a Genetic Algorithm (GA) to optimize key design parameters such as accumulator volume and pre-charged pressure, while the inner loop leverages Dynamic Programming (DP) to optimize the energy control strategy in an open-loop format without predefined structural constraints. Both loops use a single objective function, i.e. battery energy consumption
Taaghi, AmirhosseinYoon, Yongsoon
Thermal runaway in battery cells presents a critical safety concern, emphasizing the need for a thorough understanding of thermal behavior to enhance battery safety and performance. This study introduces a newly developed AutoLion 3D thermal runaway model, which builds on the earlier AutoLion 1D framework and offers significantly faster computational performance compared to traditional CFD models. The model is validated through simulations of the heat-wait-search mode of the Accelerating Rate Calorimeter (ARC), accurately predicting thermal runaway by matching experimental temperature profiles from peer-reviewed studies. Once validated, the model is employed to investigate the thermal behavior of 3D LFPO cells under controlled heating conditions, applying heat to one or more surfaces at a time while modeling heat transfer from non-heated surfaces. The primary objective is to understand how these localized heating patterns impact temperature profiles, including average core temperatures
Hariharan, DeivanayagamGundlapally, Santhosh
The adoption of hybrid electric vehicles (HEVs) is becoming more popular during the last few years due to government incentives and favourable legislation both for automotive companies and final users. This type of vehicle claims very low carbon dioxide emissions while eliminating the range anxiety associated with battery electric vehicles thanks to the on-board range extender being able to recharge the battery throughout the journey. Unfortunately, the low emissions values are more representative of the particular mathematical model implemented by the legislation than the measured real driving emissions. Specifically, the legislation does not take into account the CO2 embedded in production of the batteries or of the electrical energy stored in it. This work analyses these aspects by means of a numerical model of the BMW i3 94Ah vehicle. The results obtained are collected from simulations conducted over the Worldwide harmonized Light vehicles Test Cycle (WLTC) by using the commercial
Turner, JamesVorraro, Giovanni
Phase change energy storage devices are extensively utilized in latent heat thermal energy storage and hold significant potential for application in the thermal management of automotive batteries. By harnessing the high-density energy storage capabilities of phase change materials to absorb heat released by the batteries, followed by timely release and utilization, there is a substantial improvement in energy efficiency. However, the thermal conductivity of medium and low temperature phase change materials is poor, leading to its inefficient utilization. This paper focuses on optimizing the structure of a phase change heat exchanger in a phase change energy storage device to improve its performance. A basic design of the phase change heat exchanger is used as an example, and fin structure is added to enhance its heat exchange capabilities. A predictive surrogate model is built using numerical simulation, with the dimension and number of fins as design variables, and heat flow density
Zhang, HaonanSun, MingzheZheng, HaoyunZhang, Tianming
Battery cell aging and loss of capacity are some of the many challenges facing the widespread implementation of electrification in mobility. One of the factors contributing to cell aging is the dissimilarities of individual cells connected in a module. This paper reports the results of several aging experiments using a mini-module consisting of seven 5 Ah 21700 lithium-ion battery cells connected in parallel. The aging cycle comprised a constant current-constant voltage charge cycle at a 0.7C C-rate, followed by a 0.2C constant current discharge, spanning the useful voltage range from minimum to maximum according to the cell manufacturer. Charge and discharge events were separated by one-hour rest periods and were repeated for four weeks. Weekly reference performance tests were executed to measure static capacity, pulse power capability and resistance at different states of charge. All diagnostics were normalized with respect to their starting numbers to achieve a percentage change
Swarts, AndreSalvi, Swapnil S.Juarez Robles, Daniel
In modern vehicles, effective thermal management is crucial for regulating temperatures across various components and sub-systems, ensuring optimal performance, efficiency, safety, and passenger comfort. As the industry shifts towards reducing carbon emissions, powertrain electrification - encompassing electric and hybrid vehicles - has emerged as a prominent trend. This transition introduces greater complexities, as the powertrain system must now precisely control the temperatures of not only traditional components but also batteries, power electronics, and motors. Typically, the performance of vehicle-level thermal management systems is fully evaluated only after physical prototypes are developed and tested, particularly during summer and winter road trials. Conducting development and validation at such a late stage in the development process significantly increases both development risks and costs. To address these challenges, a comprehensive vehicle-level thermal management
Xu, ZhengQiu, JieLu, YuanWang, Yingzhen
The rapid expansion of the global electric vehicle (EV) market has significantly increased the demand for advanced thermal management solutions. Among these, the battery cold plate is a critical component, essential for maintaining optimal battery temperatures and ensuring efficient operation. As EV batteries increase in size, the thermal management requirements become more complex, necessitating the development of new alloys with enhanced strength and thermal conductivity. These advancements are crucial for the effective dissipation of heat and the ability to withstand the mechanical stresses associated with larger and more powerful batteries. The evolving performance demands of EVs are driving material innovation within the thermal management sector. This study aims to explore the global heat exchanger market trends from a material perspective, focusing on the evolution of the mechanical and thermal properties. Specifically, we investigated the transition from the traditional AA3003
Jalili, MehdiWang, XuRazm-poosh, Hadi
Toyota Motor Corporation pursuing an omnidirectional strategy that includes battery electric vehicle (BEV), plug-in hybrid electric vehicle (PHEV), and fuel cell electric vehicle (FCEV) to accelerate electrification. One of the technical challenges with our xEV batteries which feature good degradation resistance and long battery life, is that regenerative braking cannot be fully effective due to the decrease in regenerative power in some situations, such as low battery temperature. For the electrified vehicles with an internal combustion engine such as PHEVs, the solution has been running the engine to increase deceleration through engine braking during coasting. PHEVs are expected to extend their cruising range and enhance EV driving experience as "Practical BEVs". While increasing battery capacity and enhancing convenience, the restrictions on EV driving opportunity due to low battery temperature may negatively affect PHEV’s appealing. As an alternative, introducing a battery heater
Hoshino, Yu
The problem of monitoring the parametric failures of a traction electric drive unit consisting of an inverter, a traction machine and a gearbox when interacting with a battery management system has been solved. The strategy for solving the problem is considered for an electric drive with three-phase synchronous and induction machines. The drive power elements perform electromechanical energy conversion with additional losses. The losses are caused by deviations of the element parameters from the nominal values during operation. Monitoring gradual failures by additional losses is adopted as a key concept of on-board diagnostics. Deviation monitoring places increased demands on the information support and accuracy of mathematical models of power elements. We take into account that the first harmonics of currents and voltages of a three-phase circuit are the dominant energy source, higher harmonics of PWM appear as harmonic losses, and mechanical losses in the rotor and gearbox can be
Smolin, VictorGladyshev, SergeyTopolskaya, Irina
Charging a battery electric vehicle at extreme temperatures can lead to battery deterioration without proper thermal management. To avoid battery degradation, charging current is generally limited at extreme hot and cold battery temperatures. Splitting the wall power between charging and the thermal management system with the aim of minimizing charging time is a challenging problem especially with the strong thermal coupling with the charging current. Existing research focus on formulating the battery thermal management control problem as a minimum charging time optimal control problem. Such control strategy force the driver to charge with minimum time and higher charging cost irrespective of their driving schedule. This paper presents a driver-centric DCFC control framework by formulating the power split between thermal management and charging as an optimal control problem with the goal of improving the wall-to-vehicle energy efficiency. Proposed energy-efficient charging strategy
Gupta, ShobhitKang, Jun-MoZhu, YongjieLee, ChunhaoZanardelli, Wesley
This paper introduces a novel approach to optimize battery power usage and optimal engine torque for Axle disconnect device engagement under power constrained scenarios for range extended hybrid vehicles. Range extended hybrid architecture provides benefits of BEV architecture and relief the range anxiety that BEV drivers often have. The Axle disconnect device helps improve the efficiency of the battery power usage when it is disconnected and provides better drivability and performance to fulfill driver demand when it is connected [1]. Under power constraint scenario, the disconnect device engagement could take too long or eventually fail to engage and result in degradation for drivability and vehicle level performance. This novel approach is utilizing the engine to either generate more power to spin up the disconnect motor faster under discharge limited case or generate less power to allow the disconnect motor to spin down under charge limited case. The effectiveness of this approach
Sha, HangxingMadireddy, Krishna ChaitanyaBanuso, AbdulquadriKhanal, ShishirRock, JoePatel, Nadirsh
This study presents a comparative analysis of Samsung lithium-ion batteries, which are the INR21700 30T high-power (HP) cell and INR21700 50E high-energy (HE) cell, examining their design differences and performance characteristics. Based on teardown data reported in literature, the HP cell features higher porosity, thicker current collectors, and thinner electrode coatings compared to the HE cell, while the HE cell incorporates approximately 6% silicon oxide in its graphite anode for increased energy density. Cell-level characterization test results demonstrated superior rate capability of the HP cell, maintaining 93.8% of its capacity at 2C discharge, while the HE cell retained 93.4% at 1.6C. The HP cell also exhibited better cycle life stability due to its silicon-free design. Pseudo-two-dimensional (P2D) models were constructed using both teardown experimental parameters and adjusted parameters. Simulation results revealed significant discrepancies using teardown parameters
Yao, QiKollmeyer, PhillipChen, JunranPanchal, SatyamGross, OliverEmadi, Ali
A method for performance calculation and experimental method of a high voltage heater system in electric vehicles is proposed. Firstly, heater outlet temperature and pressure drop of the heater are used as metrics to compare simulation results with experimental data, thereby validating the established model. Then, simulations are performed on two heater flow channel configurations: a cavity flow channel and a cooling fin flow channel. It is observed that the latter significantly reduces the heating plate temperature. This reduction enhances the protection of heating elements and extends their operational lifespan, demonstrating the advantages of incorporating cooling fins into the flow channel structure. The optimization variables for multi-objective optimization include the fin unit length, fin height, fin thickness, fin width, and spacing between two adjacent rows of fins. The optimization objectives include pressure drop, heat transfer efficiency, and heating plate temperature
Gong, MingWang, XihuiWang, DongdongShangguan, Wen-Bin
The proliferation of the electric vehicle (EVs) in the US market led to an increase in the average vehicle weight due to the assembly of the larger high-voltage (HV) batteries. To comply with this weight increase and to meet stringent US regulations and Consumer Ratings requirements, Vehicle front-end rigidity (stiffness) has increased substantially. This increased stiffness in the larger vehicles (Large EV pickups/SUVs) may have a significant impact during collision with smaller vehicles. To address this issue, it is necessary to consider adopting a vehicle compatibility test like Euro NCAP MPDB (European New Car Assessment Program Moving Progressive Deformable Barrier) for the North American market as well. This study examines the influence of mass across vehicle classes and compares the structural variations for each impact class. The Euro NCAP MPDB (European New Car Assessment Program Moving Progressive Deformable Barrier) protocol referenced for this analysis. Our evaluation
Kusnoorkar, HarshaKoraddi, BasavarajGuerrero, MichaelSripada, Venu VinodTangirala, Ravi
This paper aims to model and simulate a design specification for a fuel cell electric powertrain tailored for Extreme H motorsport applications. A comprehensive numerical model of the powertrain was constructed using GT-SUITE v2024, integrating the 2025 Extreme H regulations, which include specifications for the fuel cell stack, electric motors, hydrogen storage, and battery systems. A detailed drive cycle representing the real-world driving patterns of Extreme E vehicles was developed, utilizing kinematic parameters derived from literature and real-world data. The performance of the Extreme H powertrain was benchmarked against the Toyota Mirai fuel cell vehicle to validate the simulation accuracy under the same racing conditions. The proposed design delivers a maximum power output of 400 kW, with 75 kW supplied by the fuel cell and 325 kW by the battery, ensuring optimal performance within the constraints set by the Extreme H 2025 regulations. Additionally, the design maintains an
Moreno Medina, JavierSamuel, Stephen
A specific thick film heater (TFH) for electric vehicles is investigaed in this study, and its three dimensional heat tansfer analysis model is estab-lished. The heat transfer and fluid performance of the TFH is analyzed using a computational fluid dynamics soft-ware. The performance of TFH is measured on a test bench, and the measured data is used to validate the developed model. Using the established model, the heating efficiency of TFH is studied for different inlet temperatures and flow rates, and the influence of the fin spoiler structure on TFH heating efficiency and the heating board temperature is investigated. The result indicates that the spoiler structure has a large effect on the board heating temperature, but has little effect on the heating efficiency. An orthogonal experimental design method is used to optimize the design of the fins and water channels, and the purpose is to reduce the board heating temperature for preventing over burning. Under the 25°C inlet
Guan, WenzheGuo, YimingWu, XiaoyongWang, DongdongShangguan, Wen-Bin
This study evaluates the performance of alternative powertrains for Class 8 heavy-duty trucks under various real-world driving conditions, cargo loads, and operating ranges. Energy consumption, greenhouse gas emissions, and the Levelized Cost of Driving (LCOD) were assessed for different powertrain technologies in 2024, 2035, and 2050, considering anticipated technological advancements. The analysis employed simulation models that accurately reflect vehicle dynamics, powertrain components, and energy storage systems, leveraging real-world driving data. An integrated simulation workflow was implemented using Argonne National Laboratory's POLARIS, SVTrip, Autonomie, and TechScape software. Additionally, a sensitivity analysis was performed to assess how fluctuations in energy and fuel costs impact the cost-effectiveness of various powertrain options. By 2035, battery electric trucks (BEVs) demonstrate strong cost competitiveness in the 0-250 mile and 250-500 mile ranges, especially when
Mansour, CharbelBou Gebrael, JulienKancharla, AmarendraFreyermuth, VincentIslam, Ehsan SabriVijayagopal, RamSahin, OlcayZuniga, NataliaNieto Prada, DanielaAlhajjar, MichelRousseau, AymericBorhan, HoseinaliEl Ganaoui-Mourlan, Ouafae
Efficient thermal management is essential for maintaining the performance and safety of large-capacity battery packs. To overcome the limitations of traditional standalone air or liquid cooling methods, which often result in inadequate cooling and uneven temperature distribution, a hybrid air-liquid cooling structure was designed. A three-dimensional model was developed, and heat transfer and fluid flow characteristics were analyzed using computational fluid dynamics (CFD) simulations. Experimental validation was carried out through discharge temperature rise tests on individual battery cells and flow resistance tests on the liquid cooling plate. The thermal performance of the hybrid system was compared to that of standalone cooling methods under various discharge rates. The results indicated that the hybrid system significantly enhanced cooling performance, reducing the maximum temperature difference by 5.54°C and 3.37°C, and the peak temperature by 11.66°C and 4.5°C, compared to air
Li, HaoGuo, YimingZhou, FupengLi, KunyuanShangguan, Wen-Bin
With Rapid growth of Electric Vehicles (EVs) in the market challenges such as driving range, charging infrastructure, and reducing charging time needs to be addressed. Unlike traditional Internal combustion vehicles, EVs have limited heating sources and primarily uses electricity from the running battery, which reduces driving range. Additionally, during winter operation, it is necessary to prevent window fogging to ensure better visibility, which requires introducing cold outside air into the cabin. This significantly increases the energy consumption for heating and the driving range can be reduced to half of the normal range. This study introduces the Ceramic Humidity Regulator (CHR), a compact and energy-efficient device developed to address driving range improvement. The CHR uses a desiccant system to dehumidify the cabin, which can prevent window fogging without introducing cold outside air, thereby reducing heating energy consumption. A desiccant system typically consists of two
Hamada, TakafumiShinoda, NarimasaKonno, YoshikiIhara, YukioIto, Masaki
The use of lithium-ion batteries in electric vehicles marks a major progression in the automotive sector. Energy storage systems extensively make use of these batteries. The extended life cycle, low self-discharge rates, high energy density, and eco-friendliness of lithium-ion batteries are well-known. However, Temperature sensitivity has an adverse effect on lithium-ion battery safety, durability, and performance. Thus, maintaining ideal operating conditions and reducing the chance of thermal runaway depend heavily on efficient thermal management. To address this, experimental study was conducted on various battery thermal management techniques, including active, passive, and hybrid approaches. These techniques were investigated for their cooling efficiencies under different operating conditions. The electro-thermal behavior of cylindrical lithium-ion battery cells, battery packs, and supervisory control techniques were simulated in the study using MATLAB Simulink, Simscape, and
Thangaraju, ShanmuganathanN, MeenakshiGanesan, Maragatham
Diverse solutions will likely be needed to decarbonize the commercial truck sector in the United States. Battery-powered vehicles play a predominant role but in some cases, fuel cell trucks are more advantageous for the consumer. This study examines several medium- and heavy-duty applications designed for different driving range requirements to identify the design space where battery and fuel cell trucks are attractive. Also considered are the impacts of purchase price, fuel cost, and vehicle usage. We examine the top 10 truck classes as well as bus applications based on vehicle population, fuel usage, and driving distances. We assume a 2030 scenario where both batteries and FC systems become less costly and more efficient, as targeted by the U.S. Department of Energy. Even for smaller-class vehicles, where battery electric vehicles are expected to be the most economical among clean vehicle solutions, the results are not straightforward. Based on vehicle design, usage, and external
Vijayagopal, RamBirky, Alicia
The shift towards hybrid and electric powertrains in off-road vehicles aims to enhance mobility, extend range, and improve energy efficiency. However, heat pump-based battery thermal management systems in these vehicles continue to consume significant energy, impacting overall range and efficiency. Effective thermal management is essential for maintaining battery performance and safety, particularly in extreme conditions. Although high-fidelity models can capture the complex dynamics of heat pumps, real-time control within model-based optimization frameworks often depends on simplified models, which can degrade system performance. To address this, we propose a novel data-driven grey box control-oriented model (COM) that accurately represents the thermal dynamics of a vapor-compression refrigeration-based heat pump system. This COM is integrated into a model-predictive control (MPC) framework, optimizing thermal management during transient and burst-power operations of the battery pack
Sundar, AnirudhGhate, AtharvaZhu, QilunPrucka, RobertRuan, YeefengFigueroa-Santos, MiriamBarron, Morgan
Battery electric vehicles (BEVs) are well-suited for many passenger vehicle applications, but high cost, short range, and long recharging times have limited their growth in commercial vehicle markets. These constraints can be eliminated with plug-in hybrid electric vehicles (PHEVs) which combine many benefits of BEVs with those of conventional vehicles. In this study, research was conducted to determine the optimal hybrid electric powertrain system for a Class 3, light duty commercial vehicle. The key technologies used in this hybrid powertrain include engine downsizing, P3 architecture hybridization, and active thermal management of aftertreatment. A vehicle cost of ownership analysis was conducted to determine the economic viability, a very important consideration for commercial vehicles. Several combinations of E-motor and battery pack sizes were evaluated during the cost analysis and the best possible configuration was determined. The resulting vehicle powertrain demonstrated ~60
Meruva, PrathikMichlberger, AlexanderBachu, PruthviBitsis, Daniel Christopher
Items per page:
1 – 50 of 5572