Browse Topic: Fuel injection

Items (4,245)
The spark ignited two-stroke engine, as a cost-efficient power unit with low maintenance demand, is used millionfold for the propulsion of hand-held application, motorcycles, scooters, boats and others. The outstanding power to weight ratio is the key advantage for two-stroke engines. However, poor exhaust emissions, caused by high scavenge losses, especially on port controlled two-stroke engines, and a low efficiency are disadvantages of this combustion process. Under the aspect of increasing environment- and health awareness, the two-stroke technology driven with fossil resources, shows no future advantage. The anthropogenic climate change force for sustainable development of combustion engines whereby reduction of fuel consumption or usage of alternative fuels is an important factor. Best way of a decarbonization to fulfil future climate goals is the utilization of non-carbon fuels. In this field of fuels, hydrogen, with its high energy content and close inexhaustible availability
Yasuda, TerutakaOswald, RolandKirchberger, Roland
The LSPI (Low Speed Pre-Ignition) is one of the consecutive abnormal combustion cycles of supercharged SI engine with direct injection fuel supply system [1]. The LSPI occurs when the engine is running at low speed and high load condition. It is important for the SI engine to control essentially with alternative fuel, e-fuel and hydrogen in the future. It is considered that the LSPI would be caused by the autoignition of the deposit, the lubricating oil from ring crevice, the lubricating oil from piston crown and so on [2, 3, 4, 5]. Among of these causes, this research focuses on the scattering lubricating oil from piston crown. The previous our research has reported on the two points. One is about the frequency and quantity of the lubricating oil scattering from piston crown [6]. Another is about the frequency of abnormal combustion by the engine test [7]. As the result, it has been cleared that the frequency of abnormal combustion is 1/10 of scattering frequency of the lubricating
Omori, TakayaTanaka, Junya
Horizontal water-cooled diesel engines are single-cylinder engines equipped with all the necessary components for operation such as a fuel tank and a radiator. Due to their versatility, there are used in a wide range of applications in Asia, Africa, South America, etc. It is necessary to comply with strengthened emissions regulations year by year in countries where environmental awareness is increasing such as China, India, etc. We have developed a new compact and high-power 13.4kW(18HP) engine which meets these needs. We realized a high-power density by using our unique expertise to maintain an engine size and increase a displacement. In addition, by optimizing a layout of crankcase ribs through structural analysis, we have achieved a maximum bore and “Reduction of the weight of the crankcase and lubricating oil consumption (LOC), and reduction of friction with narrow-width low-tangential load piston rings”. Furthermore, by designing an intake port using 3D CFD, we have optimized a
Shiomi, KentaHosoya, RyosukeKomai, YoshinobuTakashima, YusukeKitamura, TakahiroFujiwara, TsukasaSuematsu, Kosuke
This report examines the advancement and utilization of cylinder deactivation technology that enhances fuel efficiency in conventional engines without hardware modifications. It operates by halting fuel supply to some of the cylinders in multi-cylinder engines and increasing the output power of the remaining active cylinders to maintain an idle state. By implementing this technology in the mass-produced 90° V-twin engine, the U502, and deactivating one of its two cylinders, fuel consumption during idling is reduced by over 30%. The focus of this study is on the technology developed to minimize engine speed fluctuations during the transition to cylinder deactivation and reactivation for the engine. By making various modifications to the fuel injection control sequence and optimizing the throttle opening of each cylinder in idle and driving conditions, engine speed fluctuations were minimized. This allows users to reduce fuel consumption while maintaining the engine’s original
YANAGIDA, Shoji
Vehicle emission standards have become more and more stringent and have driven the development of advanced engine design with low-cost emission control technologies. For small diesel engine which is used in three-wheel (3W) passenger and load carrying vehicles, it was major task to improve lower engine rpm torque and performance to comply with stringent exhaust emissions standard as well, especially for Oxides of Nitrogen (NOx) and Particulate Matter (PM) emissions. Bharat Stage (BS) VI emission standards for three-wheel vehicles was implemented from April 2020 onwards in India. Water injection technology has proven advantageous for low-cost solution with Mechanical fuel injection system on small diesel engines, Intake port water injection is the easiest method to introduce water to engine cylinder, which calls for minimal modification of existing engine structure. In the present study 435cc naturally aspirated DI Diesel engine used for three-wheel vehicle was explored by adding water
Syed, KaleemuddinChaudhari, SandipKhairnar, GirishKatariya, RahulJagtap, PranjalBhoite, Vikram
Swirl chamber combustion system is commonly used for IDI (In-Direct Injection) diesel engine. It is characterized by swirl combustion chamber arranged in cylinder head, main combustion chamber with shallow piston recess and connecting throat where fuel spray and flame mixture is ejected out from the swirl chamber to the main chamber [1]. Fuel is supplied in the swirl chamber and a pintle type nozzle is often used in this type engine as its simple structure and robustness for operating condition. In this paper, numerical simulation of a pintle nozzle spray was focused on and simulated results were compared with high speed photo data obtained in a constant volume vessel (CVV). Spray angle and tip penetration were mainly evaluated, but simulated angle and penetration could not be matched simultaneously to these characteristics of the pintle nozzle spray when conventional spray models were used for the simulation. To overcome this mismatch, “Multi-hole replacement model” was newly
Okazaki, TadaoFujiwara, Tsukasa
The previously developed capacitance sensor for detecting a liquid fuel film was modified to apply to the in-cylinder measurement. On the developed sensor surface, comb-shaped electrodes were circularly aligned. The capacitance between the electrodes varies with the liquid fuel film adhering. The capacitance variation between the electrodes on the sensor surface was converted to the frequency variation of the oscillation circuit. In the previous study, it was revealed that the frequency of the oscillation circuit varies with the variation of the liquid fuel coverage area on the sensor surface. The developed sensor was installed in the combustion chamber of the rapid compression and expansion machine, and the performance of the developed sensor was examined. Iso-octane was used as a test fuel to explore the sensor that had been developed. As a result, the adherence of the liquid fuel directly injected into the cylinder was successfully detected under the quiescent and motoring
Kuboyama, TatsuyaMoriyoshi, YasuoTakayama, SatoshiNakabeppu, Osamu
Pre-chamber combustion has been applied as a method of low fuel consumption in spark ignition engines, and in recent years the application of pre-chambers to gasoline engines has also been actively studied. In many gasoline engines, stoichiometric combustion is common. We decided that a passive type pre-chamber with only one port fuel injection is sufficient for stoichiometric combustion. The pre-chamber system relatively has two merits of lower cost and ease of installing than other prechamber systems. Therefore, we focused on investigating the effects of improving combustion speed and knock resistance in use of the passive type pre-chamber and the applicability of the pre-chamber system in various operating points. As the concrete approach, we evaluated the heat balance and the knock resistance with and without a pre-chamber in engine bench test. As a result, the knock resistance and the fuel consumption were improved. In addition, as a result of considering lean burn in the passive
Nakao, YoshinoriSakurai, YotaHisano, AtsushiSaitou, MasahitoSuzuki, Tomoharu
The use of hydrogen as a sustainable fuel in the short term is hampered by the impossibility of large scale use due low availability. In order to promote decarbonization, complementary solution for a smooth transition is to dilute it in a mixture with methane, in a current Port Fuel Injection (PFI) internal combustion engine (ICE). This can be done as a retrofit after limited structural modifications, such as the introduction of a passive prechamber. Such a solution allows a reduction of the carbon footprint of traditional ICEs through more efficient combustion (both the prechamber technology and the hydrogen fuel properties promote an increase in combustion speed) and a reduced carbon content in the fuel. The present research activity has been carried out through numerical investigation based on three-dimensional CFD analyses to simulate the behavior of a natural gas engine fueled with CH4-H2 blends. The combustion mechanism for the fuel blend was validated against measurements of the
Balduzzi, FrancescoFerrara, GiovanniDi Iorio, SilvanaSementa, Paolo
The use of hydrogen in port fuel injection (PFI) engines faces challenges related to abnormal combustions that must be addressed, especially in transient operation. The in-cylinder air-to-fuel ratio and the amount of trapped exhaust gas have a significant impact on the probability of abnormal combustion as well as NOx emissions, and should be real-time monitored in hydrogen engines. Thus, the real-time estimation of the composition and thermodynamic state of the trapped gas mixture is crucial during transient operations, although highly challenging. This study proposes an on-line real-time physics-based MIMO (Multi-Input-Multi-Output) model to accurately estimate the amount of trapped air and exhaust gas in the cylinder at the intake valve closing (IVC) event, based on the instantaneous in-cylinder pressure measurement. With proper estimation accuracy, the injector can be controlled to correctly provide the amount of fuel necessary to achieve the target air-to-fuel ratio (AFR) and
Galli, ClaudioCiampolini, MarcoDrovandi, LorenzoRomani, LucaBalduzzi, FrancescoFerrara, GiovanniVichi, GiovanniMinamino, Ryota
Shear-polarized ultrasonic sensors have been instrumented onto the outer liner surface of an RTX-6 large marine diesel engine. The sensors were aligned with the first piston ring at top dead center and shear ultrasonic reflectometry (comparing the variation in the reflected ultrasonic waves) was used to infer metal–metal contact between the piston ring and cylinder liner. This is possible as shear waves are not supported by fluids and will only transmit across solid-to-solid interfaces. Therefore, a sharp change in the reflected wave is an indicator of oil film breakdown. Two lubricant injection systems have been evaluated—pulse jet and needle lift-type injectors. The needle lift type is a prototype injector design with a reduced rate of lubricant atomization relative to pulse jet injectors. This is manifested as a smaller reduction in the reflected ultrasonic wave, showing less metal–metal contact had occurred. During steady-state testing, the oil feed rate was varied; the high flow
Rooke, JackLi, XiangweiDwyer-Joyce, Robert S.
The adoption of hydrogen as a sustainable replacement for fossil fuels is pushing the development of internal combustion engines (ICEs) to overcome the technical limitations related to its usage. Focusing on the fuel injector in a DI configuration, it must guarantee several targets such as the adequate delivery of hydrogen mass for the given operating condition and the proper mixture formation in the combustion chamber playing a primary role in reaching the target performance in H2-ICEs. Experimental campaigns and computational fluid dynamics simulations can be used as complementary tools to provide a deep understanding of the injector behaviour and to drive design modifications in a quick and effective way. In the present work an outward opening, piezo-actuated injector purposely designed to be fuelled with hydrogen is tested on several operating conditions to evaluate its performance in terms of delivered mass flow and jet morphology using the Schlieren imaging technique. To
Pavan, NicolòCicalese, GiuseppeGestri, LucaFontanesi, StefanoBreda, SebastianoMechi, MarcoVongher, SaraPostrioti, LucioBuitoni, GiacomoMartino, Manuel
The majority of transportation systems continue to rely on internal combustion engines powered by fossil fuels. Heavy-duty applications, in particular, depend on diesel engines due to their high brake efficiency, power density, and robustness. Despite significant advancements in diesel engine technology that have reduced emissions and improved efficiency, complex and costly after-treatment systems remain necessary to meet the stringent emission regulations. Dimethyl ether (DME), which can be produced from various renewable feedstocks and possesses high chemical reactivity, is a promising alternative for heavy-duty applications, particularly in compression ignition direct injection engines. Its high reactivity, volatility, and oxygenated composition offer significant potential to address emission challenges while reducing reliance on after-treatment systems. However, DME’s lower energy density requires adjustments in injection parameters (such as injection pressure and duration) or
Cong, BinghaoLeblanc, SimonTjong, JimiTing, DavidYu, XiaoZheng, Ming
This study experimentally investigates the liquid jet breakup process in a vaporizer of a microturbine combustion chamber under equivalent operating conditions, including temperature and air mass flow rate. A high-speed camera experimental system, coupled with an image processing code, was developed to analyze the jet breakup length. The fuel jet is centrally positioned in a vaporizer with an inner diameter of 8mm. Airflow enters the vaporizer at controlled pressures, while thermal conditions are maintained between 298 K and 373 K using a PID-controlled heating system. The liquid is supplied through a jet with a 0.4 mm inner diameter, with a range of Reynolds numbers (Reliq = 2300÷3400), and aerodynamic Weber numbers (Weg = 4÷10), corresponding to the membrane and/or fiber breakup modes of the liquid jet. Based on the results of jet breakup length, a new model has been developed to complement flow regimes by low Weber and Reynolds numbers. The analysis of droplet size distribution
Ha, NguyenQuan, NguyenManh, VuPham, Phuong Xuan
Airborne compression ignition engines operating with aviation fuels are a promising option for reducing fuel consumption and increasing the range of hybrid-electric aircraft. However, the consistent ignition of Jet fuels at high-altitude conditions can be challenging. A potential solution to this problem is to ignite the fuel sprays by means of a glow-plug-based ignition assistant (IA) device. The interaction between the IA and the spray, and the subsequent combustion event result in thermal cycles that can significantly affect the IA’s durability. Therefore, designing an efficient and durable IA requires detailed understanding of the influence that the IA temperature and insertion depth have on the complex physics of fuel-air mixture ignition and flame propagation. The objective of this study is to design a conjugate heat transfer (CHT) modeling framework that can numerically replicate F-24 Jet fuel spray ignition using a glow-plug-based IA device in a rapid compression machine (RCM
Oruganti, Surya KaundinyaLien, Hao-PinTorelli, RobertoMotily, AustenLee, TonghunKim, KennethMayhew, EricKweon, Chol-Bum
This work is part of a production-intent program at Cummins to develop a 6.7L direct injection (DI), lean burn H2 spark ignition (SI) engine for medium- and heavy-duty commercial vehicles that are intended to be compliant with global VII criteria pollutants emissions standards. The engine features a low-pressure DI fuel injection system, a tumble-based combustion system with a pent-roof combustion chamber, two-stage boosting system without EGR, and dual overhead cams (DOHC) with cam phasers. The paper focuses primarily on the performance system architecture development encompassing combustion system, air-handling system, and valve strategy. Comprehensive 3D-CFD guided design analysis has been conducted to define the tumble ports, injection spray pattern, and injection strategy to optimize charge homogeneity and turbulence kinetic energy (TKE). In addition, the boosting system architecture and the valve strategy have been thoroughly evaluated through 1-D system-level engine cycle
Liu, LeiZhang, YuQin, XiaoHui, HeMin, XuLeggott, Paul
For fuels sprays under flash boiling conditions, the near nozzle region experiences rapid changes in ambient conditions due to the flashing liquid. So, it is crucial to understand the influence of spray boundary conditions on parcel-based simulations for improved predictions of fuel spray behavior in engine applications. This study builds upon previous research investigating the impact of detailed injector tip geometry on parcel simulations of non-flash boiling conditions by investigating how flash boiling behaviors affect the near nozzle region and parcel initialization conditions. Four key parameters were varied individually from a baseline spray simulation model, which resulted in a total of five cases. The parameter variations were the presence of detailed injector tip geometry versus a simplified flat surface, parcel initialization at the nozzle exit versus at the counterbore exit, the use of experimental rate-of-injection versus one-way coupling with an internal nozzle Volume of
Kumar, AmanVan Dam, Noah
In internal combustion engines, hydrogen is considered as one of the most promising alternatives to replace fossil fuels and reduce CO2 emissions. In such a context, traditional injectors for hydrocarbon fuels are currently being tailored to be used with hydrogen, or a single-hole/multi-hole cap mounted at the injector tip was used to obtain better mixing and air utilization. Nevertheless, the hydrogen injection can be accompanied by the formation of highly under-expanded jets and will significantly influence the downstream mixing process. Therefore, in order to achieve a better understanding on hydrogen-air mixture, this work aims to numerically investigate the influence of the nozzle geometry on the jet behaviors in the near nozzle region. The nozzle diameter ranges from 0.1 mm to 2.0 mm and the nozzle length is from 1mm to 2mm. The injection pressure ranges from 10 bar to 70 bar. As the boundary condition varied, differences in both the internal flow of different nozzle structures
Jiahui, LangLi, YanfeiXu, LubingXiao, MaShuai, Shijin
In this paper, based on the cylindrical flow theory of incompressible viscous fluids and the equivalent circuit model of resonant sensing elements, a theoretical model for the measurement of liquid viscosity with a U-Shaped tungsten wire resonance sensor was established. This model can measure the liquid viscosity independently without liquid density or coupled detection of liquid density. The experimental results show that the decoupling of liquid viscosity and its density can be achieved at Re<1. The liquid viscosity is strongly linear with the resonant conductance. The viscosity measurement error is less than 7.24% in the viscosity range of 7.235cP to 85.2cP.
Shan, BaoquanShen, YitaoYang, JianguoWu, Dehong
Decarbonized or low carbon fuels, such as hydrogen/methane blends, can be used in internal combustion engines to support ambitious greenhouse gas (GHG) emission reduction goals worldwide, including achieving carbon neutrality by 2045. However, as the volumetric concentration of H2 in these fuel blends surpasses 30%, the in-cylinder flame propagation and combustion rates increase significantly, causing an unacceptable increase in nitrogen oxides (NOx) emissions, which is known to have substantial negative effects on human health and the environment. This rise in engine-out NOx emissions is a major concern, limiting the use of H2 fuels as a means to reduce GHG emissions from both mobile and stationary power generation engines. In this study, an experimental investigation of the combustion performance and emissions characteristics of a 4th generation Tour split-cycle engine was undertaken while operating on 100% methane and various hydrogen/methane fuel blends (30%, 40%, and 50% by volume
Bhanage, PratikCho, KukwonAnderson, BradleyKemmet, RyanTour, GiladAtkinson, ChrisTour, HugoTour, Oded
One of the most critical enablers of hydrogen internal combustion engines is achieving rapid injection and mixing of hydrogen into the combustion chamber. Optimal cap is actively being investigated to improve the injector performance without major hardware modifications. In this study, detailed computational fluid dynamics simulations using the Reynolds-averaged Navier-Stokes (RANS) turbulence model were undertaken to investigate the behavior of hydrogen jets with various cap designs mounted on a hollow-cone injector within a constant volume chamber. It was found that the implementation of a cap in general enhances mixture formation, leading to a higher proportion of lean mixture over time. Key parameters, such as the cap's inner volume and throat area ratio, directly influence the amount of hydrogen mass trapped within the cap. A smaller volume or larger throat area ratio results in less trapped hydrogen mass. Excessive enlargement of the cap's throat area can lead to a decrease in
Zaihi, AbdullahMoreno Cabezas, KevinLiu, XinleiBen Houidi, MoezWu, HaoAlRamadan, AbdullahCenker, EmreMohan, BalajiRoberts, WilliamIm, Hong
Aluminum oxide (Al₂O₃) nanoparticles are considered a promising fuel additive to enhance combustion efficiency, reduce emissions, and improve fuel economy. This study investigates the spray characteristics of diesel fuel blended with aluminum oxide nanoparticles in a constant volume chamber. The blends were prepared by dispersing Al₂O₃ nanoparticles in diesel at varying concentrations (25, 50, and 100 mg of aluminum oxide nanoparticles into 1 L of pure diesel, respectively) using a magnetic stirrer and ultrasonication to ensure stable suspensions. Spray characterization was conducted in a high-pressure and high-temperature constant volume chamber, simulating actual engine conditions. The ambient temperatures for this experiment were set from 800 to 1200 K, and the oxygen concentrations were set from 21% to 13%. The study focused on key spray parameters such as spray penetration length, spray angle, and spray area, analyzed using high-speed imaging and laser diffraction techniques
Ji, HuangchangZhao, Zhiyu
High-octane fuel presents significant potential for enhancing the efficient and clean combustion of small GCI engines. To achieve both efficient and stable combustion during low load scenarios, this study employs the combination of simulation and experimental methodologies. By coordinating the mixing rate and chemical reaction rate, as well as optimizing the equivalent ratio, temperature inhomogeneity and other parameters, introduces a control strategy termed ‘gasoline-air’ control coupling quasi-homogeneous mixture multi-pulse charge activity control. The research indicates that a quasi-homogeneous mixture can be formed through pilot injection of gasoline during the intake stroke, with low injection pressure can enhance charge activity and promoting clean combustion. The optimal injection timing is identified at approximately -315 CA ATDC, where appears peak value of indicated thermal efficiency. The multi-pulse charge activity control strategy can effectively control the combustion
Nie, JinLongYi, Yucheng
This research experimentally investigates the spray vaporization of high-pressure dimethyl ether (DME) using a single-hole research injector focusing on nominal operating conditions from the Engine Combustion Network (ECN). DME is a synthetic alternative to diesel fuel, offering both high reactivity and potential reductions in particulate emissions. Because DME only features half of the energy density of diesel fuel, a specifically designed fuel system with a high mass flow rate to meet the energy delivery requirements is needed. The unique physical properties of DME, including higher vapor pressure and lower viscosity, introduce challenges like cavitation and unique evaporation characteristics that deviate from typical diesel fuel. These features are likely to lead to differences in fuel mixing and combustion. This study aims to provide detailed experimental data on DME spray characteristics under engine-like conditions, helping the development of predictive CFD models for optimal
Yi, JunghwaWan, KevinPickett, LyleManin, Julien
This study numerically investigates ammonia-diesel dual fuel combustion in a heavy-duty engine. Detailed and reduced reaction mechanisms are validated against experimental data to develop injection timing maps aimed at maximizing indicated thermal efficiency (ITE) while mitigating environmental impacts using stochastic reactor model (SRM). The equivalence ratio, ammonia energy share (AES), injection timing, and engine load are varied to optimize combustion efficiency and minimize emissions. The results demonstrate that advancing injection timing reduces ITE due to heightened in-cylinder temperatures, resulting in increased heat losses through walls and exhaust gases. Maximum chemical efficiency is observed at an equivalence ratio near 0.9 but decreases thereafter, influenced by ammonia’s narrow flammability range. Emission analysis highlights significant reductions in Global Warming Potential (GWP) and Eutrophication Potential (EP) with higher AES, driven by decreased CO2 and nitrogen
Karenawar, Shivraj AnandYadav, Neeraj KumarMaurya, Rakesh Kumar
Based on the harmonic current injection method used to suppress the torsional vibration of the electric drive system, the selection of the phase and amplitude of the harmonic current based on vibration and noise has been explored in this paper. Through the adoption of the active harmonic current injection method, additional torque fluctuations are generated by actively injecting harmonic currents of specific amplitudes and phases, and closed-loop control is carried out to counteract the torque fluctuations of the motor body. The selection of the magnitude of the injected harmonic current is crucial and plays a vital role in the reduction of torque ripple. Incorrect harmonic currents may not achieve the optimal torque ripple suppression effect or even increase the motor torque ripple. Since the actively injected harmonic current is used to counteract the torque ripple caused by the magnetic flux linkage harmonics of the motor body, the target harmonic current command is very important
Jing, JunchaoZhang, JunzhiLiu, YiqiangHuang, WeishanDai, Zhengxing
Aviation gas turbine engines typically utilize twin-orifice swirl atomizers to achieve a fine spray, widen the spray cone angle, and shorten spray penetration. However, using twin-orifice atomizers complicates the spray structure, and knowledge of the spray, especially in the near-field nozzle zone, remains limited. This study experimentally investigates the morphologies and structure of liquid fragments in the near-field nozzle of a twin-orifice atomizer. A high-speed backlit experimental system was developed to examine the liquid fragment morphologies and structures. The fragments are classified into spherical droplets, ligaments, and other irregular structural fragments. Results show that with increasing the pressure in the near field of the nozzle, the proportion of nearly round fragments decreases with increasing pressure. In contrast, the proportion of ligament-like fragments tends to increase. Besides, the particle size distribution did not change significantly within the 10 to
Pham Vu, NamManh, VuPham, Phuong XuanNguyen, Kien Trung
The hydrogen internal combustion engine (H2-ICE) is an attractive powertrain solution for decarbonization of heavy equipment. This paper presents the development of a lean burn spark ignited (SI) H2-ICE with Port Fuel Injection (PFI). The targeted application is STAGE V fixed speed power generation realized without the need for NOx aftertreatment. A 13L EURO VI diesel engine is used as a base. The engine conversion process to hydrogen fuel is presented in detail discussing key aspects regarding both hardware and control software adaptations to fulfill the performance, emission, and safety requirements. In the development process, measurements have been performed on a single-cylinder and a multi-cylinder engine setup supported by detailed CFD computations to quantify operational limits and specify development directions. These results are translated into updated hardware and software of the fixed speed SI H2-ICE. The resulting H2-ICE is shown to comply with the requirements for power
Seykens, XanderDoosje, ErikBekdemir, CemilWezenbeek, Peter
As the demand for cleaner and more efficient propulsion systems increases, hydrogen internal combustion engines have emerged as a promising solution due to their high thermal efficiency and zero-carbon emissions potential. Achieving ultra-lean combustion conditions (lambda > 2.8) in hydrogen engines significantly improves thermal efficiency while maintaining combustion stability and reducing knock intensity. However, hydrogen injection timing and pressure are crucial factors influencing the combustion and emission characteristics of hydrogen engines. This study investigates the effects of hydrogen injection timing and pressure on the combustion performance and emission characteristics of a direct injection hydrogen engine under different load conditions. Experimental tests were conducted on a multi-cylinder engine equipped with a hydrogen direct injection system, focusing on part-load operation to explore the interplay between injection parameters and engine performance. Results show
Du, JiakunWu, GuangquanChen, HongSun, FanjiaXie, FangxiLi, YuhuaiSun, YaoQi, HongzhongLi, Yong
In hydrogen-fueled internal combustion engine (H2ICE), there are some ways to reduce nitrogen oxides (NOx) emissions. Using the wide flammability range of hydrogen, such as conducting lean combustion to reduce nitrogen oxides and employing exhaust gas recirculation (EGR), have been adopted. However, challenges exist in terms of load expansion, and due to the absence of high heat capacity of carbon dioxides in the exhaust, EGR also struggles to exhibit significant effects. In such a scenario, there is growing interest in injecting water into the H2ICE as an alternative to augment the EGR effect. In this study, the spark ignition (SI) single-cylinder engine equipped with two direct injectors was used to evaluate the hydrogen and the water dual direct injection combustion system. This system involved the direct injection of hydrogen using a wall-guided gasoline direct injector and the direct injection of water into the combustion chamber using a diesel injector. This approach utilizes the
Kim, KiyeonLee, SeungilKim, SeungjaeLee, SeunghyunMin, KyoungdougOh, SechulSon, JongyoonLee, Jeongwoo
Items per page:
1 – 50 of 4245