Browse Topic: Chassis

Items (14,468)
In traditional four-wheeled automobiles, the imbalance between the roll moment, which is the product of the centrifugal force during a turn acting on the center of gravity and the height of the center of gravity, and roll stiffness, which is the product of the left-right difference in tire vertical load and the tread width and commonly used among automotive suspension engineers, of the front and rear sections necessitates body torsional rigidity. However, there is a lack of specific cases and guidelines for constructing the body structure of three-wheeled PMVs (Personal Mobility Vehicles) with a tilting mechanism from the perspective of vehicle dynamics characteristics. In this paper, the basic considerations related to the dynamics of such three-wheeled PMVs are investigated. We use the term “torsional rigidity” to refer to the stiffness as the torsional deformation of the body itself, and the term “roll stiffness” to refer to the moment that counteracts the roll moment during a turn
Haraguchi, TetsunoriKaneko, Tetsuya
The rear swing arm, a crucial motorcycle component, connects the frame and wheel, absorbing the vehicle’s load and various road impacts. Over time, these forces can damage the swing arm, highlighting the need for robust design to ensure safety. Identifying potential vulnerabilities through simulation reduces the risk of failure during the design phase. This study performs a detailed fatigue analysis of the swing arm across different road conditions. Data for this research were collected from real-vehicle experiments and simulation analyses, ensuring accuracy by comparing against actual performance. Following CNS 15819-5 standards, road surfaces such as poorly maintained, bumpy, and uneven roads were tested. Using Motion View, a comprehensive multi-body dynamic model was created for thorough fatigue analysis. The results identified the most stress-prone areas on the swing arm, with maximum stress recorded at 109.6N on poorly maintained roads, 218.3N on bumpy surfaces, and 104.8N on
Chiou, Yi-HauHwang, Hsiu-YingHuang, Liang-Yu
Most electric 2-wheelers on the market today seek to replace combustion engine vehicles from 50cc to 150cc which equates to an electric motor power between 2 and 12 kW. The traction voltage level of these vehicles is mostly between 44V and 96V. However, the actual choice of voltage on a specific vehicle seems to be arbitrary and higher voltage does not necessarily correlate with higher motor power. This paper seeks to highlight considerations and tradeoffs which feed the choice of traction voltage levels. Important criteria are electrical safety standards and their impact on vehicle electrical architecture, the performance and availability of key electronics parts such as capacitors, MOSFETs, and gate drivers, while also highlighting functional safety aspects. This paper shows by a comprehensive analysis of the motor drive that for the vehicle class mentioned above the traction voltage level can be kept below 60V without any performance impact, while also ensuring electrical and
Schmitt, Stefan
This article analyses the fundamental curving mechanics in the context of conditions of perfect steering off-flanging and on-flanging. Then conventional, radial, and asymmetric suspension bogie frame models are presented, and expressions of overall bending stiffness kb and overall shear stiffness ks of each model are derived to formulate the uniform equations of motion on a tangent and circular track. A 4 degree of freedom steady-state curving model is formulated, and performance indices such as stability, curving, and several parameters including angle of attack, tread wear index, and off-flanging performance are investigated for different bogie frame configurations. The compatibility between stability and curving is analyzed concerning those configurations and compared. The critical parameters influencing hunting stability and curving ability are evaluated, and a trade-off between them is analyzed. For the verification, the damped natural frequencies and mean square acceleration
Sharma, Rakesh ChandmalSharma, Sunil KumarPalli, SrihariRallabandi, Sivasankara RajuSharma, Neeraj
This study investigates the influence of magnetorheological (MR) dampers in semi-active suspension systems (SASSs) on ride comfort, vehicle stability, and overall performance. Semi-active suspension systems achieve greater flexibility and efficacy by combining MR dampers with the advantages of active and passive suspension systems. The study aims to measure the benefits of MR dampers in improving ride comfort, vehicle stability, and overall system performance. The dynamic system model meets all required performance criteria. This study demonstrates that the proposed artificial intelligence approach, including a fuzzy neural networks proportional-integral-derivative (FNN-PID) controller, significantly enhances key performance criteria when tested under various road profiles. The control performance requirements in engineering systems are evaluated in the frequency and time domains. A quarter-car model with two degrees of freedom (2 DOF) was simulated using MATLAB/Simulink to assess the
M.Faragallah, MohamedMetered, HassanAbdelghany, M.A.Essam, Mahmoud A.
Electric vehicles (EVs) are particularly susceptible to high-frequency noise, with rubber eigenmodes significantly influencing these noise characteristics. Unlike internal combustion engine (ICE) vehicles, EVs experience pronounced variations in dynamic preload during torque rise, which are substantially higher. This dynamic preload variation can markedly impact the high-frequency behaviour of preloaded rubber bushings in their installed state. This study investigates the effects of preload and amplitude on the high-frequency dynamic performance of rubber bushings specifically designed for EV applications. These bushings are crucial for vibration isolation and noise reduction, with their role in noise, vibration, and harshness (NVH) management being more critical in EVs due to the absence of traditional engine noise. The experimental investigation examines how preload and excitation amplitude variations influence the dynamic stiffness, damping properties, and overall performance of
Hazra, SandipKhan, Arkadip Amitava
With the continuous advancement of automotive intelligence, new energy vehicles are becoming increasingly popular. These vehicles demand a steering system independent of the engine, offering better control and enhanced steering performance. The steer by wire (SBW) system, known for its high precision and fast response, fulfills these requirements by providing improved flexibility, stability, and comfort. Consequently, SBW systems have attracted significant attention in both research and application domains. As the mechanical structure of the steer-by-wire system is canceled, the road feel can not be directly transmitted to the steering wheel, and it is necessary to apply the road feel obtained according to the state of the vehicle or combined with the planning of the driving environment to the steering wheel through the road feel motor to complete the road feel simulation so that the driver can feel the feedback similar to that of the traditional steering vehicles, which can not only
Li, ShangZheng, HongyuKaku, Chuyo
Distributed electric vehicles, equipped with independent motors at each wheel, offer significant advantages in flexibility, torque distribution, and precise dynamic control. These features contribute to notable improvements in vehicle maneuverability and stability. To further elevate the overall performance of vehicles, particularly in terms of handling, stability, and comfort, this paper introduces an coordinated control strategies for longitudinal, lateral, and vertical motion of distributed electric vehicles. Firstly, a full-vehicle dynamics model is developed, encompassing interactions between longitudinal, lateral, and vertical forces, providing a robust framework for analyzing and understanding the intricate dynamic behaviors of the vehicle under various operating conditions. Secondly, a vehicle motion controller based on Model Predictive Control is designed. This controller employs a sophisticated multi-objective optimization algorithm to manage and coordinate several critical
Jia, JinchaoYue, YangSun, AoboLiu, Xiao-ang
Many methods have been proposed to accurately compute a vehicle’s dynamic response in real-time. The semi-recursive method, which models using relative coordinates rather than dependent coordinates, has been proven to be real-time capable and sufficiently accurate for kinematics. However, not only kinematics but also the compliance characteristics of the suspension significantly impact a vehicle’s dynamic response. These compliance characteristics are mainly caused by bushings, which are installed at joints to reduce vibration and wear. As a result, using relative or joint coordinates fails to account for the effects of bushings, leading to a lack of compliance characteristics in suspension and vehicle models developed with the semi-recursive method. In this research, we propose a data-driven approach to model the compliance characteristics of a double wishbone suspension using the semi-recursive method. First, we create a kinematic double wishbone suspension model using both the semi
Zhang, HanwenDuan, YupengZhang, YunqingWu, Jinglai
In this paper, the equivalent elliptic gauge pendulum model of liquid sloshing in tank is established, the pendulum dynamic equation of tank in non-inertial frame of reference is derived, and the dynamics model of tank transporter is constructed by force analysis of the whole vehicle. A liquid tank car model was built in TruckSim to study its dynamic response characteristics. Aiming at the problem that the coupling effect between liquid sloshiness in tank and tank car can easily affect the rolling stability of vehicle, the roll dynamics model of tank heavy vehicle is established based on the parameterized equivalent elliptic gauge single pendulum model, and the influence of different lateral acceleration and suspension system on the roll stability is studied. The results show that the coupling effect between the motion state of the tank car and the liquid slosh lengthens the oscillation period of the liquid slosh in the tank, and the amplitude of the load transfer rate of the tank car
Yukang, Guo
As a distributed wire control brake system, the electro-mechanical brake (EMB) may face challenges due to the need to integrate the actuator in the limited space beside the wheel. During extended downhill braking, especially on wet roads with reduced adhesion, the EMB must operate at high intensity. The significant heat generated by friction can lead to thermal deformation of components, such as the lead screw, compromising braking stability. This paper focuses on pure electric light trucks and proposes a tandem composite braking method. This approach uses an eddy current retarder (ECR) or motor to provide basic braking torque, while the EMB supplies the dynamic portion of the braking torque, thereby alleviating the braking pressure on the EMB. First, a driver model, tire model, motor model, and braking models are developed based on the vehicle's longitudinal dynamics. In addition, the impact of various factors, such as rainfall intensity, road slope, ramp length and vehicle speed, on
Liu, WangZhang, YuXiao, HongbiaoShen, Leiming
This study focuses on the dynamic behavior and ride quality of three different modes of oil-gas interconnected suspension systems: fully interconnected mode, left-right interconnected mode, and independent mode. A multi-body dynamics model and a hydraulic model of the oil-gas suspension were established to evaluate the system's performance under various operating conditions. The research includes simulations of pitch and roll excitations, as well as ride comfort tests on different road surfaces, such as Class B roads and gravel roads. The analysis compares the effectiveness of the modes in suppressing pitch and roll movements and their impact on overall ride comfort. Results show that the independent mode outperforms the other two in minimizing roll, while the fully interconnected mode offers better pitch control but at the cost of reduced comfort. These findings provide valuable insights for the future design and optimization of oil-gas interconnected suspension systems, especially in
Xinrui, WangChen, ZixuanZhang, YunqingWu, Jinglai
This paper presents findings on the use of data from next-generation Tire Pressure Monitoring Systems (TPMS), for estimating key tire states such as leak rates, load, and location, which are crucial for tire-predictive maintenance applications. Next-generation TPMS sensors provide a cost-effective and energy-efficient solution suitable for large-scale deployments. Unlike traditional TPMS, which primarily monitor tire pressure, the next-generation TPMS used in this study includes an additional capability to measure the tire's centerline footprint length (FPL). This feature offers significant added value by providing comprehensive insights into tire wear, load, and auto-location. These enhanced functionalities enable more effective tire management and predictive maintenance. This study collected vehicle and tire data from a passenger car hatchback equipped with next-generation TPMS sensors mounted on the inner liner of the tire. The data was analyzed to propose vehicle-tire physics
Sharma, SparshSon, Roman
Path tracking is a key function of intelligent vehicles, which is the basis for the development and realization of advanced autonomous driving. However, the imprecision of the control model and external disturbances such as wind and sudden road conditions will affect the path tracking effect and even lead to accidents. This paper proposes an intelligent vehicle path tracking strategy based on Tube-MPC and data-driven stable region to enhance vehicle stability and path tracking performance in the presence of external interference. Using BP-NN combined with the state-of-the-art energy valley optimization algorithm, the five eigenvalues of the stable region of the vehicle β−β̇ phase plane are obtained, which are used as constraints for the Tube-MPC controller and converted into quadratic forms for easy calculation. In the calculation of Tube invariant sets, reachable sets are used instead of robust positive invariant sets to reduce the calculation. Simulation results demonstrates that the
Zhang, HaosenLi, YihangWu, Guangqiang
The half vehicle spindle-coupled multi-axial input durability test has been broadly used in the laboratory to evaluate the fatigue performance of the vehicle chassis systems by automotive suppliers and OEMs. In the lab, the front or rear axle assembly is usually held by fixtures at the interfaces where it originally connects to the vehicle body. The fixture stiffness is vital for the laboratory test to best replicate the durability test in the field at a full vehicle level especially when the subframe of the front or rear axle is hard mounted to the vehicle body. In this work, a multi-flexible body dynamics (MFBD) model in Adams/Car was utilized to simulate a full vehicle field test over various road events (rough road, braking, steering). The wheel center loads were then used as inputs for the spindle coupled simulations of the front axle with a non-isolated subframe. Three types of fixtures including trimmed vehicle body, a rigid fixture with softer connections and a rigid fixture
Gao, JianghuaSmith, DerekZhang, XinYu, Xiao
The Autocycle is a style of vehicle that most often utilizes a reverse-tricycle design with two front wheels and a single rear wheel. Modern autocycles in the United States are often utilized in a recreational role. This work presents physical measurements of two modern autocycles for use in accident reconstruction and pursues a deeper understanding of the unique attributes and handling associated with these vehicles. Vehicles were used to measure physical properties and subjected to cornering tests presented herein, and the data is compared to that for a conventional automobile. Observations on tire scuff marks are made from cornering tests unique to these vehicles. Strengths and challenges with this type of vehicle design are presented for various use cases as compared to conventional automobiles. Data and knowledge from this study are published to aid accident reconstruction efforts.
Warner, WyattSwensen, GrantWarner, Mark
In order to manage the serious global environmental problems, the automobile industry is rapidly shifting to electric vehicles (EVs) which have a heavier weight and a more rearward weight distribution. To secure the handling and stability of such vehicles, understanding of the fundamental principles of vehicle dynamics is inevitable for designing their performance. Although vehicle dynamics primarily concerns planar motion, the accompanying roll motion also influences this planar motion as well as the driver's subjective evaluation. This roll motion has long been discussed through various parameter studies, and so on. However, there is very few research that treats vehicle sprung mass behavior as “vibration modes”, and this perspective has long been an unexplored area of vehicle dynamics. In this report, we propose a method to analytically extract the vibration modes of the sprung mass by applying modal analysis techniques to the governing equations of vehicle handling and stability
Kusaka, KaoruYuhara, Takahiro
Adverse weather conditions such as rain and snow, as well as heavy load transportation, can cause varying degrees of damage to road surfaces, and untimely road maintenance often results in potholes. Perception sensors equipped on intelligent vehicles can identify road surface conditions in advance, allowing each wheel’s suspension to actively adjust based on the road information. This paper presents an active suspension control strategy based on road preview information, utilizing a newly designed dual-chamber active air suspension system. It addresses the issue of point cloud stratification caused by vehicle body vibrations in onboard LiDAR data. The point cloud is processed through segmentation, filtering, and registration to extract real-time road roughness information, which serves as preview information for the suspension control system. The MPC algorithm is applied to actively adjust the nonlinear stiffness and damping of the suspension’s dual-chamber air springs, enhancing
Dong, FuxinShen, YanhuaWang, KaidiLiu, ZuyangQian, Shuo
Vehicle handling is significantly influenced by aerodynamic forces, which alter the normal load distribution across all four wheels, affecting vehicle stability. These forces, including lift, drag, and side forces, cause complex weight transfers and vary non-linearly with vehicle apparent velocity and orientation relative to wind direction. In this study, we simulate the vehicle traveling on a circular path with constant steering input, calculate the normal load on each tire using a weight transfer formula, calculate the effect of lift force on the vehicle on the front and rear, and calculate the vehicle dynamic relation at steady state because the frequency of change due to aerodynamic load is significantly less than that of the yaw rate response. The wind velocity vector is constant while the vehicle drives in a circle, so the apparent wind velocity relative to the car is cyclical. Our approach focuses on the interaction between two fundamental non-linearity’s: the nonlinear
Patil, HarshvardhanWilliams, Daniel
In order to effectively improve the chassis handling stability and driving safety of intelligent electric vehicles (IEVs), especially in combing nonlinear observer and chassis control for improving road handling. Simultaneously, uncertainty with system input, are always existing, e.g., variable control boundary, varying road input or control parameters. Due to the higher fatality rate caused by variable factors, how to precisely chose and enforce the reasonable chassis prescribed performance control strategy of IEVs become a hot topic in both academia and industry. To issue the above mentioned, a fuzzy sliding mode control method based on phase plane stability domain is proposed to enhance the vehicle’s chassis performance during complex driving scenarios. Firstly, a two-degree-of-freedom vehicle dynamics model, accounting for tire non-linearity, was established. Secondly, combing with phase plane theory, the stability domain boundary of vehicle yaw rate and side-slip phase plane based
Liao, YinshengWang, ZhenfengGuo, FenghuanDeng, WeiliZhang, ZhijieZhao, BinggenZhao, Gaoming
Hybrid vehicles are driven by the vehicle controller, engine controller and motor controller through torque control, and there may be unexpected acceleration or deceleration of the vehicle beyond the driver's expectation due to systematic failure and random hardware failure. Based on the torque control strategy of hybrid vehicles, the safety monitoring model design of torque control is carried out according to the ISO 26262 safety analysis method. Through the establishment of safety goals and the analysis of safety concepts, this paper conducts designs including the driver allowable torque design for safety monitoring, the driver torque prediction design for safety monitoring, the rationality judgment design of driver torque for safety monitoring, the functional safety degradation design, and the engine start-stop status monitoring, enabling the system to transition to a safe state when errors occur. Firstly, the design of the driver's allowable torque includes the allowable requested
Jing, JunchaoWang, RuiguangLiu, YiqiangHuang, WeishanDai, Zhengxing
Magnetorheological (MR) dampers, known for their remarkable dependability and cost-effectiveness, have established themselves as prime semi-active vibration control devices in engineering systems. MR dampers are categorized as adaptive devices because their features may be readily adjusted by applying a regulated voltage signal. Their ability to offer superior performance while mitigating the drawbacks of fully active actuators underscores their practical significance. This research is to investigate some system hybrid controllers using a combination state derivative feedback and a linear-quadratic regulator for use in conjunction with the damper controller of a semi-active suspension of a Quarter vehicle model to improve ride comfort and vehicle stability. The mathematical model of 3 degrees of freedom for semi-active suspension using MR dampers will be derived and simulated using MATLAB and SIMULINK software. In order to quantify the effectiveness of the suggested control strategies
M.Faragallah, MohamedMetered, HassanEssam, Mahmoud A.
The suspension Kinematics & compliance (K&C) characteristic test bench can simulate the excitation of the road to the wheels under various typical working conditions in a quasi-static manner on the bench, enabling the measurement of the K&C characteristics of the suspension system without knowing the specific suspension structure form, parameters, etc., assisting in the entire design process of the vehicle. In this paper, aiming at various geometric source errors existing in the processing and assembly process of the K&C characteristic test bench, an evaluation method based on the homogeneous transformation matrix is proposed to establish the position error of the center of the end loading disk in the series motion chain. Firstly, the mapping relationship between the position error of the end loading disk in the series mechanism kinematic chain and the assembly error is established by using the homogeneous transformation matrix. Then, the change matrix of the coordinate system from the
Sun, HaihuaDuan, YupengWu, JinglaiZhang, Yunqing
With the continuous development of automobile technology, vehicle handling performance and safety have become increasingly critical research areas. The active rear-wheel (ARW) steering system, a technology that significantly enhances vehicle dynamics and driving stability, has garnered widespread attention. By coordinating front-wheel steering with rear-wheel angle adjustments, ARW improves handling flexibility and stability, particularly during high-speed driving and under extreme conditions. Therefore, designing an efficient ARW control algorithm and optimizing its performance are vital to enhancing a vehicle's overall handling capability. This study delves into the control algorithm design and performance optimization of ARW. First, a comprehensive vehicle dynamics model is constructed to provide a solid theoretical basis for developing control algorithms. Next, optimal control theory is applied to regulate the rear-wheel steering angle, and an LQR control strategy with variable
Zhang, YiZheng, HongyuKaku, ChuyoZong, ChangfuZhang, Yuzhou
The main purpose of the semi-active hydraulic damper (SAHD) is for optimizing vehicle control to improve safety, comfort, and dynamics without compromising the ride or handling characteristics. The SAHD is equipped with a fast-reacting electro-hydraulic valve to achieve the real time adjustment of damping force. The electro-hydraulic valve discussed in this paper is based on a valve concept called “Pilot Control Valve (PCV)”. One of the methods for desired force characteristics is achieved by tuning the hydraulic area of the PCV. This paper describes a novel development of PCV for practical semi-active suspension system. The geometrical feature of the PCV in the damper (valve face area) is a main contributor to the resistance offered by the damper. The hydraulic force acting on the PCV significantly impacts the overall performance of SAHD. To quantify the reaction force of the valve before and after optimization under different valve displacements and hydraulic pressures were simulated
Chintala, ParameshHornby, Ryan
FSAE is a competition designed to maximize car performance, in which the steering system is a key subsystem, and the steering system performance directly affects the cornering performance of the car. The driver relies on the steering system for effective handling, which is also crucial for cornering and achieving faster lap times. Therefore, while improving the performance of the steering system, it is crucial to match the vehicle design to the driver's habits. Traditionally, steering systems typically use an Ackermann rate between 0% and 100% to offset the slip angle caused by tire deformation, thus achieving the purpose of reducing tire wear. Calculations have shown that a 40-60% Ackermann rate provides a similar compensation effect with little difference in tire wear. The traditional steering design method also does not consider the driver's driving habits and feedback, which is not conducive to the improvement of the overall performance of the car. In FSAE's figure-of-eight loops
Wu, HailinLi, Mingyuan
Vehicle sideslip is a valuable measurement for ground vehicles in both passenger vehicle and racing contexts. At relevant speeds, the total vehicle sideslip, beta, can help drivers and engineers know how close to the limits of yaw stability a vehicle is during the driving maneuver. For production vehicles or racing contexts, this measurement can trigger Electronic Stability Control (ESC). For racing contexts, the method can be used for driver training to compare driver techniques and vehicle cornering performance. In a fleet context with Connected and Autonomous Vehicles (CAVS) any vehicle telemetry reporting large vehicle sideslip can indicate an emergency scenario. Traditionally, sideslip estimation methods involve expensive and complex sensors, often including precise inertial measurement units (IMUs) and dead reckoning, plus complicated sensor fusion techniques. Standard GPS measurements can provide Course Over Ground (COG) with quite high accuracy and, surprisingly, the most
Hannah, AndrewCompere, Marc
Objective: This study aims to evaluate the biofidelity of the Advanced Chinese Human Body Model (AC-HUMs) by utilizing a generic sedan buck model and post-mortem human surrogates (PMHS) test data. Methods: The boundary conditions of the simulation were derived from the PMHS test with the buck vehicle. The methodology involved the pose adjustment of the upper and lower extremities of AC-HUMs, executed through a pre-simulation approach. Subsequently, a 200 milliseconds whole body pedestrian crash simulation was conducted using the buck vehicle and the AC-HUMs pedestrian model. The trajectories of AC-HUMs during the period from initial position to head impact were recorded, including the Head CG, T1, T8 and pelvis. Based on the knee joint, the corridors of trajectories from the PMHS test were scaled to match the Chinese 50th percentile male to evaluate the biofidelity of AC-HUMs's kinematic response. Furthermore, the biomechanical responses were compared with the PMHS tests, including
Qian, JiaqiWang, QiangLiu, YuWu, XiaofanHuida, ZhangBai, Zhonghao
Taking a commercial vehicle cab suspension system as the research focus, a rigid-flexible coupled dynamics model was established based on the nonlinear characteristics of the integrated damper air spring and bushings. Time-domain vibration acceleration signals were acquired at the connection points between the frame, cab, and suspension. The vibration signals at the frame and suspension connection points were input into the simulation model, where the vibration responses at the cab and suspension connection points were calculated and analyzed using the established cab suspension system model. The accuracy of the model was verified by comparing the simulation results with experimental data. The established cab suspension system model was further used to evaluate human vibration comfort within the cab, following national standards for subjective human perception. A piecewise polynomial function was employed to fit the stiffness-damping characteristics of the integrated damper air spring
Hao, QiZhu, YuntaoSun, WenSun, KaiSun, ZhiyongHuang, YuZhen, RanShangguan, Wen-Bin
Due to the frequent and significant changes of the motor torque of hybrid vehicles during driving often occurring with the driving conditions, and the existence of the transmission tooth surface switching caused by the change in torque direction, as well as the underdamping characteristics caused by the relatively simple transmission system, the vehicle is prone to vehicle body shaking problems under conditions such as the transformation from acceleration conditions to energy recovery conditions, and exit from energy recovery. In order to ensure the ride smoothness of the hybrid vehicle while improving its power response performance, aiming at the underdamping characteristics of its transmission system, this paper develops a transmission PCM vibration suppression control strategy based on the vehicle control system to enhance the torque response and smoothness after Tip out or Tip in after braking. This strategy includes the identification of preconditions and the active intervention
Jing, JunchaoZhang, JunzhiZuo, BotaoLiu, YiqiangHuang, WeishanXue, Tianjian
As global warming and environmental problems are becoming more serious, tires are required to achieve a high level of performance trade-offs, such as low rolling resistance, wet braking performance, driving stability, and ride comfort, while minimizing wear, noise, and weight. However, predicting tire wear life, which is influenced by both vehicle and tire characteristics, is technically challenging so practical prediction method has long been awaited. Therefore, we propose an experimental-based tire wear life prediction method using measured tire characteristics and the wear volume formula of polymer materials. This method achieves practical accuracy for use in the early stages of vehicle development without the need for time-consuming and costly real vehicle tests. However, the need for improved quietness and compliance with dust regulations due to vehicle electrification requires more accuracy, leading to an increase in cases requiring judgment through real vehicle tests. To address
Ando, Takashi
Following the current need of the automotive sector on reducing secondary emissions coming from non-exhaust sources, this paper presents an innovative zero-emissions magneto-rheological braking system, specifically designed to reach future brake emission targets while maintaining safety brake performance. In particular, the article focusses on the experimental setup design to evaluate a full-sized brake prototype under real load conditions and it presents the first experimental results. The zero-emission braking prototype has been developed for reaching performance compatible with the automotive application, specifically a segment-A vehicle, being able to generate enough braking torque as to perform an emergency brake maneuver without any other traditional braking system. A central aspect to confirm the system’s performance is the development of a test bench engineered for assessing the magneto-rheological braking technology. Detailed insights into the comprehensive strategy
Tempone, Giuseppe PioDe Carlo, MatteoCarello, Massimilianade Carvalho Pinheiro, HenriqueImberti, Giovanni
The problem of monitoring the parametric failures of a traction electric drive unit consisting of an inverter, a traction machine and a gearbox when interacting with a battery management system has been solved. The strategy for solving the problem is considered for an electric drive with three-phase synchronous and induction machines. The drive power elements perform electromechanical energy conversion with additional losses. The losses are caused by deviations of the element parameters from the nominal values during operation. Monitoring gradual failures by additional losses is adopted as a key concept of on-board diagnostics. Deviation monitoring places increased demands on the information support and accuracy of mathematical models of power elements. We take into account that the first harmonics of currents and voltages of a three-phase circuit are the dominant energy source, higher harmonics of PWM appear as harmonic losses, and mechanical losses in the rotor and gearbox can be
Smolin, VictorGladyshev, SergeyTopolskaya, Irina
To ensure the safety and stability of road traffic, autonomous vehicles must proactively avoid collisions with traffic participants when driving on public roads. Collision avoidance refers to the process by which autonomous vehicles detect and avoid static and dynamic obstacles on the road, ensuring safe navigation in complex traffic environments. To achieve effective obstacle avoidance, this paper proposes a CL-infoRRT planning algorithm. CL-infoRRT consists of two parts. The first part is the informed RRT algorithm for structured roads, which is used to plan the reference path for obstacle avoidance. The second part is a closed-loop simulation module that incorporates vehicle kinematics to smooth the planned obstacle avoidance reference path, resulting in an executable obstacle avoidance trajectory. To verify the effectiveness of the proposed method, four static obstacle test scenarios and four RRT comparison algorithms were designed. The implementation results show that all five
Wu, WeiLu, JunZeng, DequanYang, JinwenHu, YimingYu, QinWang, Xiaoliang
Hydro-pneumatic suspension is widely used due to its favorable nonlinear stiffness and damping characteristics. However, with the presence of parameter uncertainties and high nonlinearities in the hydro-pneumatic suspension system, the effectiveness of the controller is often suboptimal in practical applications. To mitigate the influence of these issues on the control performance, an adaptive sliding mode control method with an expanded state observer (ESO) is proposed. Firstly, a nonlinear mathematical model of hydro-pneumatic suspension, considering seal friction, is established based on the hydraulic principle and the knowledge of fluid mechanics. Secondly, the ESO is designed to estimate the total disturbance caused by the nonlinearities and uncertainties, and it is incorporated into the sliding mode control law, allowing the control law to adapt to the operating state of the suspension system in real time, which solves the effect of uncertainties and nonlinearities on the system
Niu, ChangshengLiu, XiaoangJia, XingGong, BoXu, Bo
Items per page:
1 – 50 of 14468