Browse Topic: Optimization

Items (7,003)
The rear swing arm, a crucial motorcycle component, connects the frame and wheel, absorbing the vehicle’s load and various road impacts. Over time, these forces can damage the swing arm, highlighting the need for robust design to ensure safety. Identifying potential vulnerabilities through simulation reduces the risk of failure during the design phase. This study performs a detailed fatigue analysis of the swing arm across different road conditions. Data for this research were collected from real-vehicle experiments and simulation analyses, ensuring accuracy by comparing against actual performance. Following CNS 15819-5 standards, road surfaces such as poorly maintained, bumpy, and uneven roads were tested. Using Motion View, a comprehensive multi-body dynamic model was created for thorough fatigue analysis. The results identified the most stress-prone areas on the swing arm, with maximum stress recorded at 109.6N on poorly maintained roads, 218.3N on bumpy surfaces, and 104.8N on
Chiou, Yi-HauHwang, Hsiu-YingHuang, Liang-Yu
As the automotive sector shifts towards cleaner and more sustainable technologies, fuel cells and batteries have emerged as promising technologies with revolutionary potential. Hydrogen fuel cell vehicles offer faster refueling times, extended driving ranges, and reduced weight and space requirements compared to battery electric vehicles, making them highly appealing for future transportation applications. Despite these advantages, optimizing electrode structures and balancing various transport mechanisms are crucial for improving PEFCs’ performance for widespread commercial viability. Previous research has utilized topology optimization (TO) to identify optimal electrode structures and attempted to establish a connection between entropy generation and topographically optimized structures, aiming to strengthen TO numerical findings with a robust theoretical basis. However, existing studies have often neglected the coupling of transport phenomena. Typically, it is assumed that a single
Tep, Rotanak Visal SokLong, MenglyAlizadeh, MehrzadCharoen-amornkitt, PatcharawatSuzuki, TakahiroTsushima, Shohji
Flex fuel vehicles (FFV) can operate effectively from E5 (Gasoline 95%, ethanol 5%) fuel to E100 (Gasoline 0%, ethanol 100%) fuel. It is necessary to meet the performance, drivability, emission targets and regulatory requirements irrespective of fuel mixture combination. This research work focuses on optimizing the combustion efficiency and conversion efficiency of catalytic converter of a spark-ignited less than 200 cc engine for FFV using Taguchi methods robust optimization technique. The study employs an eight-step robust optimization approach to simultaneously minimize engine out emissions and maximize catalytic converter efficiency. Six control factors including type of fuel, catalyst heating rpm, lambda (excess-air ratio), injection end angle, lambda controller delay, and ignition timing are optimized. Four noise factors like compression ratio, clearance volume, catalyst noble metal loading, and catalyst aging are also considered. Through approximately 100 physical experiments on
Vaidyanathan, BalajiArunkumar, PraveenkumarShunmugasundaram, PalaniMurugesan, ManickamJayajothijohnson, Vedhanayagam
The rise of electric vehicles (EVs) highlights the need to transition to a renewable energy society, where power is generated from sustainable sources. This shift is driven by environmental, economic, and energy security concerns. However, renewable energy sources like wind and solar are intermittent, necessitating extensive energy storage systems. Vanadium redox flow batteries (VRFBs) are promising for large-scale energy storage due to their long cycle life, scalability, and safety. In VRFBs, cells are typically connected in series to increase voltage, with electrolytes introduced through parallel flow channels using a single manifold. This design, while simple and low in pressure drop, often leads to imbalanced flow rates among cells, affecting performance. Balancing flow rates is crucial to minimize uneven overpotential and enhance durability, presenting an optimization challenge between achieving uniform flow and minimizing pressure drop. This study developed numerical models to
Suwanpakdee, NutAiemsathit, PorametCharoen-amornkitt, PatcharawatSuzuki, TakahiroTsushima, Shohji
Topology optimization (TO) in electrochemical systems has recently attracted many researchers. Previous studies suggested minimal performance differences between 2D and 3D designs, indicating that 2D models suffice to enhance performance, especially in unidirectional flow scenarios. A later study found that the concentration distribution in an optimized 2D flow system differed from that in a unidirectional flow system. We posited that pulsating flow could further enhance the performance of such systems. First, we initiated TO for a diffusion-reaction system in a steady state. The optimized structure obtained from this process served as the foundation for subsequent investigations involving a pulsating flow source in convection-diffusion-reaction systems. We introduced two different systems with distinct flow natures: one characterized by a flow nature of 1D and the other by a flow nature of 2D. The results demonstrated that the optimized structure with a heterogeneous distribution
Long, MenglyAlizadeh, MehrzadSun, PengfeiCharoen-amornkitt, PatcharawatSuzuki, TakahiroTsushima, Shohji
In recent years, researchers have increasingly focused on ammonia–diesel dual-fuel engines as a means of reducing CO2 emissions. Analyzing in-cylinder combustion processes is essential for optimizing the performance of ammonia–diesel dual-fuel engines. However, there is currently a lack of suitable reaction kinetics models for ammonia–diesel engine conditions. In this study, the ignition delay of ammonia/n-heptane mixtures was measured, and a reduced chemical mechanism was developed. Using rapid compression machine (RCM) experiments, the ignition delays of ammonia/n-heptane mixtures with different ammonia energy fractions (AEFs) (40%, 60%, and 80%) were measured. The test pressure ranged from 1.5 to 3.0 MPa, while the temperature ranged from 667 to 919 K, with an equivalence ratio of 1. The results showed that as the AEFs increased, the ignition delay of the premixed mixture also increased. When the AEF was 40%, the ammonia/n-heptane premixed mixture exhibited the negative temperature
Cai, KaiyuanLiu, YiChen, QingchuQi, YunliangLi, LiWang, Zhi
Different approaches are undertaken to mitigate the impact of the transport sector on climate change. Alongside electrifying powertrains, sustainable e-fuels such as polyoxymethylene dimethyl ethers (OME) are considered a promising bridging technology for different applications. However, this requires that the engines are optimized for the new fuels. Accordingly, this study aims to optimize the numerical spray modeling of OME in CONVERGE. Based on the KH–RT break-up model, the spray simulations of three different commercial injectors for heavy-duty applications are analyzed regarding the predictability of the liquid and gaseous penetration lengths and the total simulation time. A sensitivity analysis is conducted for the turbulence model, mesh size, and spray parameters prior to optimizing the spray model and validating it with experimental results. While each parameter individually influences the different phases of the injection event, the sensitivity analysis reveals that the break
Zepf, AndreasHärtl, MartinJaensch, Malte
With the growing diversification of modern urban transportation options, such as delivery robots, patrol robots, service robots, E-bikes, and E-scooters, sidewalks have gained newfound importance as critical features of High-Definition (HD) Maps. Since these emerging modes of transportation are designed to operate on sidewalks to ensure public safety, there is an urgent need for efficient and optimal sidewalk routing plans for autonomous driving systems. This paper proposed a sidewalk route planning method using a cost-based A* algorithm and a mini-max-based objective function for optimal routes. The proposed cost-based A* route planning algorithm can generate different routes based on the costs of different terrains (sidewalks and crosswalks), and the objective function can produce an efficient route for different routing scenarios or preferences while considering both travelling distance and safety levels. This paper’s work is meant to fill the gap in efficient route planning for
Bao, ZhibinLang, HaoxiangLin, Xianke
The slope and curvature of spiral ramps in underground parking garages change continuously, and often lacks of predefined map information. Traditional planning algorithms is difficult to ensure safety and real-time performance for autonomous vehicles entering and exiting underground parking garages. Therefore, this study proposed the Model Predictive Path Integral (MPPI) method, focusing on solving motion planning problems in underground parking garages without predefined map information. This sample-based method to allows simultaneous online autonomous vehicle planning and tracking while not relying on predefined map information,along with adjusting the driving path accordingly. Key path points in the spiral ramp environment were defined by curvature, where reducing the dimensionality of the sampling space and optimizing the computational efficiency of sampled trajectories within the MPPI framework. This ensured the safety and computational speed of the improved MPPI method in motion
Liu, ZuyangShen, YanhuaWang, Kaidi
With the increasing prevalence of electric vehicles (EVs), decreasing vehicle drag is of upmost importance, as range is a primary consideration for customers and has a direct bearing on the cost of the vehicle. While the relationship between drag and range is well understood, there exists a discrepancy between the label range and the real-world range experienced by customers. One of the factors influencing the difference is the ambient wind condition that modifies the resultant air speed and yaw angle, which is typically minimized during SAE coast-down testing. The following study implements a singular wind-averaged drag (WAD) coefficient which is derived from a 3-point yaw curve to show the impact of yaw as compared to the zero-yaw condition. This leads to an interesting dilemma for the vehicle aerodynamicist: whether to optimize the vehicle's exterior shape for low wind (zero yaw) conditions or for real-world conditions where the ambient wind generally produces a few degrees of yaw
Kaminski, MeghanD'Hooge, AndrewBorton, Zackery
The suspension system could transmit and filter the forces between the body and road surface, which affects vehicle ride comfort and road maintenance capability. Compared to traditional passive and semi-active suspension, Active Suspension Systems (ASS) could automatically adjust the suspension stiffness, damping force, and body height according to changes in the vehicle's load distribution, travelling speed, and braking action through the addition of a power source such as a linear motor. Although the existing advanced control methods could help to effectively improve the driving quality of vehicles equipped with ASS, the conflict between ride comfort and road maintenance capacity is still a difficult problem to be solved. Therefore, an Active Suspension System optimal control strategy considering vehicle ride comfort and road maintenance capability is proposed in this paper. Firstly, a quarter ASS model and a road model are respectively developed based on the system dynamics
Zhu, BingZhang, ChaohuiSun, JihangWang, ShiweiDing, ShuweiLi, LunChen, Zhicheng
Energy efficient configuration schemes are critical to the fuel economy and power of hybrid vehicles. Single planetary gear (PG) configurations are highly integrated, simple and reliable, but have limited fuel saving potential. To overcome these problems, a new multi-gear power split (PS) powertrain has been proposed because of their high efficiency and excellent overall performance. Only one PG and one synchronizer are required. In order to systematically explore all possible designs of multi-gear-PS hybrid designs, this paper proposes a topological tree graph method: 1) inspired by the “D” matrix automatic modeling method, a new configuration tree matrix is proposed, which is used to complete the isomorphism determination, mode feature classification, and dynamics modeling; a design synthesis method for the multi-gear PS configuration is investigated; 2) A new near-optimal energy management strategy, the improved Rapid-DP (IR-DP), is proposed for the fast computation of the near
Zou, YungeZhang, YuxinYang, Yalian
Taking a commercial vehicle cab suspension system as the research focus, a rigid-flexible coupled dynamics model was established based on the nonlinear characteristics of the integrated damper air spring and bushings. Time-domain vibration acceleration signals were acquired at the connection points between the frame, cab, and suspension. The vibration signals at the frame and suspension connection points were input into the simulation model, where the vibration responses at the cab and suspension connection points were calculated and analyzed using the established cab suspension system model. The accuracy of the model was verified by comparing the simulation results with experimental data. The established cab suspension system model was further used to evaluate human vibration comfort within the cab, following national standards for subjective human perception. A piecewise polynomial function was employed to fit the stiffness-damping characteristics of the integrated damper air spring
Hao, QiZhu, YuntaoSun, WenSun, KaiSun, ZhiyongHuang, YuZhen, RanShangguan, Wen-Bin
Growth in the EV market is resulting in an unprecedented increase of electrical load from EV charging at the household level. This has led to concern about electric utilities’ ability to upgrade electrical distribution infrastructure at an affordable cost and sufficient speed to keep up with EV sales. Adoption of EVs in the California market has outpaced the national average and offers early insight for other regions of the United States. The Sacramento Municipal Utility District (SMUD) partnered with two grid-edge Distributed Energy Resource Management System (DERMS) providers, the OVGIP (recently incorporated as ChargeScape, a joint venture of Ford, BMW, Honda, and Nissan) and Optiwatt, to deliver a vehicle telematics-based active managed charging pilot. The pilot program, launched in Summer 2022 enrolled approximately 1,200 EVs over two years including Tesla, Ford, BMW, and GM vehicles. The goal of this pilot program was to evaluate the business case for managed charging to mitigate
Liddell, ChelseaSchaefer, WalterDreffs, KoraMoul, JacobKay, CarolAswani, Deepak
A specific thick film heater (TFH) for electric vehicles is investigaed in this study, and its three dimensional heat tansfer analysis model is estab-lished. The heat transfer and fluid performance of the TFH is analyzed using a computational fluid dynamics soft-ware. The performance of TFH is measured on a test bench, and the measured data is used to validate the developed model. Using the established model, the heating efficiency of TFH is studied for different inlet temperatures and flow rates, and the influence of the fin spoiler structure on TFH heating efficiency and the heating board temperature is investigated. The result indicates that the spoiler structure has a large effect on the board heating temperature, but has little effect on the heating efficiency. An orthogonal experimental design method is used to optimize the design of the fins and water channels, and the purpose is to reduce the board heating temperature for preventing over burning. Under the 25°C inlet
Guan, WenzheGuo, YimingWu, XiaoyongWang, DongdongShangguan, Wen-Bin
A method for performance calculation and experimental method of a high voltage heater system in electric vehicles is proposed. Firstly, heater outlet temperature and pressure drop of the heater are used as metrics to compare simulation results with experimental data, thereby validating the established model. Then, simulations are performed on two heater flow channel configurations: a cavity flow channel and a cooling fin flow channel. It is observed that the latter significantly reduces the heating plate temperature. This reduction enhances the protection of heating elements and extends their operational lifespan, demonstrating the advantages of incorporating cooling fins into the flow channel structure. The optimization variables for multi-objective optimization include the fin unit length, fin height, fin thickness, fin width, and spacing between two adjacent rows of fins. The optimization objectives include pressure drop, heat transfer efficiency, and heating plate temperature
Gong, MingWang, XihuiWang, DongdongShangguan, Wen-Bin
As a crucial tool for lunar exploration, lunar rovers are highly susceptible to instability due to the rugged lunar terrain, making control of driving stability essential during operation. This study focuses on a six-wheel lunar rover and develops a torque distribution strategy to improve the handling stability of the lunar rover. Based on a layered control structure, firstly, the approach establishes a two-degree-of-freedom single-track model with front and rear axle steering at the state reference layer to compute the desired yaw rate and mass center sideslip angle. Secondly, in the desired torque decision layer, a sliding mode control-based strategy is used to calculate the desired total driving torque. Thirdly, in the torque distribution layer, the optimal control distribution is adopted to carry out two initial distributions and redistribution of the drive torque planned by the upper layer, to improve the yaw stability of the six-wheeled lunar rover. Finally, a multi-body dynamics
Liu, PengchengZhang, KaidiShi, JunweiYang, WenmiaoZhang, YunqingWu, Jinglai
This paper summarizes work on the application of a new and fully parallelized native GPU-based finite-volume solver on the DrivAER Notchback configuration using a wall-function LES approach. A series of meshes generated using a Rapid-Octree strategy have been investigated, and results for drag, surface pressure coefficient and velocity profile are compared with available experimental data.
Menter, FlorianDalvi, AshwiniFlad, DavidSharkey, Patrick
The natural wind experienced on public roads can increase the yaw angle and therefore drag coefficient (CD), which may contribute to the discrepancy between catalog fuel economy and actual fuel economy. The impact of yaw characteristics alone on fuel economy during actual driving has not been verified or proven as it is difficult to obtain actual driving data under uniform conditions. For this reason, shape optimization is normally performed at zero-yaw through the aerodynamic development phases. In this paper, two vehicles with different yaw sensitivity characteristics are driven simultaneously, and fuel economy measurements are performed simultaneously with ambient airflow, environment, and vehicle conditions. The results where the conditions of the two vehicles match are extracted to clarify the impact of the differences of yaw characteristics on fuel economy. The obtained results matched the values predicted by theoretical calculations for the impact of yaw angle on fuel economy
Onishi, YasuyukiNichols, LarryMetka, Mattmasumitsu, YasutakaInoue, Taisuke
This paper explores a parameter optimization calculation method for a dual-motor coupled integrated single-axle drive system, aiming to achieve the optimal balance between vehicle dynamics, fuel efficiency, and system efficiency under this configuration. By constructing a vehicle longitudinal dynamics model and referencing motor models, the effective operating range is calculated. Vehicle acceleration time, gradeability, and maximum speed are used as constraints, while the proportion of the high-efficiency operating area of the drive system is taken as the objective function for optimizing relevant system parameters. This method improves computational efficiency by dividing the contour lines, thus eliminating the need to traverse all points in the constraint area and converting them into an intuitive analysis of the operating range, which reduces the need for point-by-point calculations across the entire working area.
Gu, ZhuangzhuangYou, JianhuiWu, JinglaiZhang, Yunqing
Trajectory tracking control is a critical component of the autopilot system, essential for achieving high-performance autonomous driving. This paper presents the design of a stable, reliable, accurate, fast, and robust trajectory tracking controller. Specifically, a lateral and longitudinal trajectory tracking controller based on a linear parameter time-varying model predictive control (LPV-MPC) framework is designed. Firstly, a three-degree-of-freedom vehicle dynamics model and a tracking error model are established. Secondly, a multi-objective function and constraints considering tracking accuracy and lateral stability are formulated, and the quadratic programming (QP) method is employed to solve the optimization problem. Finally, PID speed tracking control is introduced in the longitudinal control scheme for comparison with the proposed MPC longitudinal speed control. A step velocity tracking test validates the effectiveness of the MPC speed tracking controller. In the lateral
Pan, ShicongLu, JunYu, YinquanZeng, DequanYang, JinwenHu, YimingJiang, ZhiqiangLiu, Dengcheng
Optimizing engine mounting systems is a complex task that requires balancing the isolation of vehicle vibrations with controlling powertrain movement within a limited dynamic envelope. Six Degrees of Freedom (6DOF) optimization is widely used for mounting stiffness and location optimization. This study investigates the application of various optimization algorithms for 6DOF analysis in engine mount design, where the system’s stochastic behaviour and probabilistic characteristics present additional challenges. Selecting an appropriate optimization framework is essential for achieving accurate and efficient NVH results. Recent advancements in research have introduced several 6DOF optimization algorithms to determine the optimal stiffness and location of engine mounts. The study evaluates a range of optimization methods, including Simultaneous Hybrid Exploration that is Robust, Progressive and Adaptive (SHERPA), Quadratic Programming (QP), Genetic Algorithm (GA), Particle Swarm
Hazra, SandipKhan, Arkadip
In future planetary exploration missions, the Eight-Wheeled Planetary Laboratory (EWPL) will have sufficient capacity for tasks but will experience significant lateral slips during high-speed turns due to its large inertia. Modern technology allows for independent steering of all eight wheels, but controlling each wheel's steering angle is key to improving stability during turns. This paper introduces a novel rear-axle steering feed-forward controller to reduce sideslip. First, a mathematical model for the vehicle's steering is established, including kinematic equations based on Ackermann steering. Feed-forward zero side-slip control is applied to the third and fourth axles to counteract the side-slip angle of the center of mass. A multi-body dynamics model of the EWPL is then built in Chrono to evaluate the turning radius and optimize steering angle ratios for the rear axles. Finally, a steady-state cornering simulation on loose terrain compares the performance of the proposed
Liu, JunZhang, KaidiShi, JunweiYang, WenmiaoZhang, YunqingWu, Jinglai
The current research landscape in path tracking control predominantly focuses on enhancing tracking accuracy, often overlooking the critical aspect of passenger comfort. To address this gap, we propose a novel path tracking control method that integrates vehicle stability indicators and road curvature variations to elevate passenger comfort. The core contributions are threefold: firstly, we conduct comprehensive vehicle dynamics modeling and analysis to identify key parameters that significantly impact ride comfort. By integrating human comfort metrics with vehicle maneuverability indices, we determine the optimal range of dynamics parameters for maximizing passenger comfort during driving. Secondly, inspired by human driving behavior, we design a path tracking controller that incorporates an anti-saturation algorithm to stabilize tracking errors and a curvature optimization algorithm to mimic human driving patterns, thereby enhancing comfort. Lastly, comparative simulations with two
Lu, JunZeng, DequanHu, YimingWang, XiaoliangLiu, DengchengJiang, Zhiqiang
Enhancing the heat dissipation performance of ventilated brake discs is a complex challenge involving fluid dynamics, solid mechanics, rotational motion, thermal transfer, and frictional interactions. To address this issue, this study developed a comprehensive simulation model for brake disc heat dissipation, informed by wind tunnel testing conducted on a multi-purpose vehicle (MPV) model. The research included a sensitivity analysis of design parameters related to the brake disc blades and employed a topology optimization approach to enhance the disc's heat dissipation capabilities. The study successfully demonstrated the applicability of topology optimization to the intricate thermal simulation of brake discs. As a result, a novel brake disc blade design with a unique geometry was developed, and the underlying principles contributing to its improved thermal performance were thoroughly analyzed. The optimized brake disc design, distinguished by a carefully contoured inlet curve and a
Zhao, WentaoJia, QingQin, LanweiXia, ChaoChao, HanDaxin, JiangYang, Zhigang
Path tracking is a key function of intelligent vehicles, which is the basis for the development and realization of advanced autonomous driving. However, the imprecision of the control model and external disturbances such as wind and sudden road conditions will affect the path tracking effect and even lead to accidents. This paper proposes an intelligent vehicle path tracking strategy based on Tube-MPC and data-driven stable region to enhance vehicle stability and path tracking performance in the presence of external interference. Using BP-NN combined with the state-of-the-art energy valley optimization algorithm, the five eigenvalues of the stable region of the vehicle β−β̇ phase plane are obtained, which are used as constraints for the Tube-MPC controller and converted into quadratic forms for easy calculation. In the calculation of Tube invariant sets, reachable sets are used instead of robust positive invariant sets to reduce the calculation. Simulation results demonstrates that the
Zhang, HaosenLi, YihangWu, Guangqiang
The paper provides a detailed analysis of the transmission system design under the single motor drive scheme, with a focus on the 2024 Formula SAE (FSAE). The selection of the motor type is determined based on race rules and battery box output power limits. In terms of transmission ratio design, this study takes into account the car's power, balancing acceleration ability and maximum speed to determine an optimal transmission ratio through theoretical calculations and empirical values. Furthermore, it explores how to optimize overall drive system performance by considering technical parameters, power requirements, economic considerations of each system assembly, and validates these findings through software simulations. Notably, significant improvements in reliability are achieved with the newly designed transmission system and wheel rim system while also proposing lightweighting methods for key components. We have carried out extensive verification in both simulation and real vehicle
Wang, LiuxinLi, ChengfengZhu, XiranLiu, Minmin
Tractor-semitrailers play an important role in the transportation industry. However, global warming and the rapid advancement of energy technologies have driven the transformation of high-emission vehicles, such as tractor-semitrailers, to be powered by new energy sources in order to achieve goals related to energy conservation, emission reduction, and cost savings. By using the motor as the primary driving force, the energy recovered during braking or coasting can be converted into electricity and stored in the battery for later use. While much research has been conducted on braking control and energy recovery for passenger cars, there is limited research on tractor-semitrailers. Additionally, the jackknife is a critical factor to consider under high-speed conditions. To investigate the braking energy recovery of electric tractor-semitrailers, tire and motor models were developed based on the turning and braking conditions of such vehicles. Taking into account the load transfer effect
Chen, RunpingDuan, Yupeng
A methodology for optimizing natural properties of a powertrain for an electric vehicle has been presented. A model with six-degree-of-freedom was proposed utilizing ADAMS, and the natural frequencies and energy distribution of the powertrain are estimated using the proposed model. The calculated natural frequencies and energy distribution shown that the initial design of mount stiffness does not meet requirements of natural frequency and decoupling ratio, and vibration isolation standards. To overcome the limitations of conventional optimization techniques, a non-dominated sorting genetic algorithm (NSGA) was adopted for the enhancement optimization the mounts parameters. The optimization objectives included the refinement of the decoupling rates and frequency distribution at all mounting directions. Stiffness parameters of the mounts were optimized via the NSGA. The optimized results confirmed significant improvements for powertrain natural characteristics. This study presented an
Jin, YangLi, DeweiZhao, YangXiao, LeiGuo, Yiming
Abstract This paper introduces a method to solve the instantaneous speed and acceleration of a vehicle from one or more sources of video evidence by using optimization to determine the best fit speed profile that tracks the measured path of a vehicle through a scene. Mathematical optimization is the process of seeking the variables that drive an objective function to some optimal value, usually a minimum, subject to constraints on the variables. In the video analysis problem, the analyst is seeking a speed profile that tracks measured vehicle positions over time. Measured positions and observations in the video constrain the vehicle’s motion and can be used to determine the vehicle’s instantaneous speed and acceleration. The variables are the vehicle’s initial speed and an unknown number of periods of approximately constant acceleration. Optimization can be used to determine the speed profile that minimizes the total error between the vehicle’s calculated distance traveled at each
Snyder, SeanCallahan, MichaelWilhelm, ChristopherJohnk, ChrisLowi, AlvinBretting, Gerald
Items per page:
1 – 50 of 7003